Implementation of Floating-Point VSIPL Functions on FPGA-Based Reconfigurable Computers Using High-Level Languages
Malachy Devlin1, Robin Bruce2 and Stephen Marshall3

1Nallatech, Boolean House, 1 Napier Park, Glasgow, UK, G68 0BH, m.devlin@nallatech.com
2Institute of System Level Integration, Alba Centre, Alba Campus, Livingston, EH54 7EG, UK, rbruce@sli-institute.ac.uk

3Strathclyde University, 204 George Street, Glasgow G1 1XW, s.marshall@eee.strath.ac.uk
Abstract

Increasing gate densities now mean that FPGAs are a viable alternative to microprocessors for implementing both single and double-precision floating-point arithmetic. Peak single-precision floating-point performance for a single FPGA can exceed 25 GFLOPS. This paper presents the results of initial investigations into the feasibility of implementing the VSIPL API using FPGAs as the principal processing element. Potential impediments to such a VSIPL implementation are introduced and possible solutions are discussed. Also investigated is the practicality of implementing the hardware parts of functions using high-level HDL compilation tools. A one-dimensional convolution/FIR function is presented, implemented on a Xilinx Virtex-II 6000 FPGA.
1
Introduction I
Reconfigurable computers can offer significant performance advantages over microprocessor solutions thanks to their unique capabilities. High memory bandwidths and close coupling to I/O and data allow FPGA-based systems to offer 10-100 times speed-up in certain application domains over traditional Von Neumann stored-program architectures. FPGA-based computers are particularly suitable for implementing signal processing applications due to their ability to be configured to efficiently process I/O streams.

Moore’s Law and its corollaries indicate a doubling of transistor density every 18 months. For FPGAs it has been suggested that this equates to an approximate doubling of FPGA area and clock rate every two years [2].
With increased resources and performance, it becomes possible to offer more than just tailored solutions to individual problems. An FPGA-based reconfigurable computer can be tailored to suit an entire application domain. Such a platform would offer the application developer significant abstraction from the intricacies and idiosyncrasies of FPGA design, while still providing a significant performance benefit, enough to justify the switch from traditional architectures.
This paper examines architectures for FPGA-based high-level-language implementations of the Vector, Signal and Image Processing Library (VSIPL).
2
Background
2.1
VSIPL: The Vector, Signal and Image Processing Library
VSIPL has been defined by a consortium of industry, government and academic representatives [3]. It has become a de-facto standard in the embedded signal-processing world. VSIPL is a C-based application programming interface (API) that has been initially targeted at a single microprocessor. The scope of the full API is extensive, offering a vast array of signal processing and linear algebra functionality for many data types. VSIPL implementations are generally a reduced subset or profile of the full API. The purpose of VSIPL is to provide developers with a standard, portable application development environment. Successive VSIPL implementations can have radically different underlying hardware and memory management systems and still allow applications to be ported between them with minimal modification of the code.
VSIPL was developed principally at the behest of the US Navy, which desired that developers use a standard development environment. The perceived advantages to this were to include: increased potential for code re-use, an easier task for developers moving between projects and organizations, and the possibility of changing or upgrading the underlying hardware with minimal need to port code.
2.2
FPGA Floating-Point Comes of Age
The research presented in [1] and [2] sums up the research carried out to date on floating-point arithmetic as implemented on FPGAs. As well as this, these papers present extensions to the field of research that investigate the viability of double-precision arithmetic and seek up-to-date performance metrics for both single and double precision.
VSIPL is fundamentally based around floating-point arithmetic and offers no fixed-point support. Both single-precision and double-precision floating-point arithmetic is available in the full API. Any viable VSIPL implementation must guarantee the user the dynamic range and precision that floating-point offers.

FPGAs have in recent times rivalled microprocessors when used to implement bit-level and integer-based algorithms. Many techniques have been developed that enable hardware developers to attain the performance levels of floating-point arithmetic. Through careful fixed-point design the same results can be obtained using a fraction of the hardware that would be necessary for a floating-point implementation. Floating-point implementations are seen as bloated; a waste of valuable resource. Nevertheless, as the reconfigurable-computing user base grows, the same pressures that led to floating-point arithmetic logic units (ALUs) becoming standard in the microprocessor world are now being felt in the field of programmable logic design. Floating-point performance in FPGAs now rivals that of microprocessors; certainly in the case of single-precision and with double-precision fast gaining ground. Up to 25 GFLOPS are possible with single precision for the latest generation of FPGAs. Approximately a quarter of this figure is possible for double precision. Unlike CPUs, FPGAs are limited by peak FLOPS for many key applications and not memory bandwidth.
Fully floating-point implemented design solutions offer invaluable benefits to an enlarged reconfigurable-computing market. Reduced design time and far simplified verification are just two of the benefits that go a long way to addressing the issues of ever-decreasing design time and an increasing FPGA design skills shortage. Everything implemented to date in this investigation has used single-precision floating point arithmetic.
2.3
DIME-C

This research is sponsored by Nallatech. All work carried out in this project to date has used Nallatech hardware and Nallatech software tools.

The algorithms implemented in hardware were realized using a tool that Nallatech have been developing. This is a C-to-VHDL compiler known as DIME-C. The “C” that can be compiled is a subset of ANSI C. This means that while not everything that can be compiled using a gcc compiler can be compiled to VHDL, all source code that can be compiled in DIME-C to VHDL can also be compiled using a standard C compiler. This allows for rapid functional verification of algorithm code before it is compiled to VHDL.
Code is written as standard sequential C. The compiler aims to extract obvious parallelism within loop bodies as well as aiming to pipeline loops wherever possible. In nested loops, only the innermost loop can be pipelined. The designer should aim to minimize the nesting of loops as much as possible and have the bulk of calculations being performed in the innermost loop.
One must also ensure that inner loops do not break any of the rules for pipelining. The code must be non-recursive, and memory elements must not be accessed more times than can be accommodated. Variables stored in registers in the fabric can be accessed at will, but locally declared arrays stored in dual-ported blockRAM are limited to two accesses per cycle. SRAM and blockRAM-stored I/O arrays are limited to one access per clock cycle. Beyond these considerations the user does not need any knowledge of hardware design in order to produce VHDL for pipelined architecture implementing algorithms.

DIME-C supports bit-level, integer and floating-point arithmetic. The floating-point arithmetic is implemented using Nallatech’s floating-point library modules.
Another key feature of DIME-C is the fact that the compiler seeks to exploit the essentially serial nature of the programs to resource share between sections of the code that do not execute concurrently. This can allow for complex algorithms to be implemented that demand many floating-point operations, provided that no concurrently executing code aims to use more resources than are available on the device.
DIME-C is scheduled for release as part of the DIMETalk 3 development environment.
3
Implementing VSIPL on FPGA Fabric

Developing an FPGA-based implementation of VSIPL offers as many exciting possibilities as it presents challenges. The VSIPL specification has in no way been developed with FPGAs in mind. This research is being carried out in the expectation that it shall one day comply to a set of rules for VISPL that consider the advantages and limitations of FPGAs.

Over the course of this research we expect to find solutions to several key difficulties that impede the development of FPGA VSIPL, paying particular attention to:
1.) Finite size of hardware-implemented algorithms vs. conceptually boundless vectors.

2.) Runtime reconfiguration options offered by microprocessor VSIPL.

3.) Vast scope of VSIPL API vs. limited fabric resource.

4.) Communication bottleneck arising from software-hardware partition.

5.) Difficulty in leveraging parallelism inherent in expressions presented as discrete operations.
This final point is a problem with VSIPL in general and is not limited to FPGA VSIPL. It is this issue, among others, that is driving the development of the VSIPL standard from a C-based implementation to a C++ based implementation known as VSIPL++ that is more focussed on developing for parallelism. [5]
As well as the technical challenges this research poses there is a great logistical challenge. In the absence of a large research team, the sheer quantity of functions requiring hardware implementation seems overwhelming. In order to succeed this project has as a secondary research goal the development of an environment that allows for rapid development and deployment of signal processing algorithms in FPGA fabric. Another issue is that when implemented in hardware, the full range of functions available in the implementation of a VSIPL profile would even have difficulty fitting on a multi-FPGA system made up of the largest components. This suggests that dynamic reconfiguration could have a role to play in a final solution.
3.1
Architectural Possibilities

In implementing VSIPL on FPGAs there are several potential architectures that are being explored. The three primary architectures are as follows, in increasing order of potential performance and design complexity:
1.) Function ‘stubs’: Each function selected for implementation on the fabric transfers data from the host to the FPGA before each operation of the function and brings it back again to the host before the next operation. This model (figure 1) is the simplest to implement, but excessive data transfer greatly hinders performance. The work presented here is based on this first model.
[image: image1.png]Host Fabric

Function 3 Stub: Function 3

Figure 1 – Function ‘stubs’

2.) Full Application Algorithm Implementation: Rather than utilising the FPGA to process functions separately and independently, we can utilise high level compilers to implement the application’s complete algorithm in C making calls to FPGA VSIPL C Functions. This can significantly reduce the overhead of data communications, FPGA configuration and cross function optimizations. This is shown in figure 2.
[image: image2.png]Host

Fabric

Initialisation

Data Transfer

Data Transfer

Term n

Data

Data

Figure 2 - Full Application Algorithm Implementation

3.) FPGA Master Implementation: Traditional systems are considered to be processor centric; however, FPGAs now have enough capability to create FPGA-centric systems. In this approach the complete application can reside on the FPGA, including program initialisation and VSIPL application algorithm. Depending on the rest of the system architecture, the FPGA VSIPL-based application can use the host computer as an I/O engine, or alternatively the FPGA can have direct I/O attachments thus bypassing operating system latencies. This is shown in figure 3.
[image: image3.png]Host

Fabric

Data IO

Data IO

Initialisation

Function 1

Function 2

Figure 3 – FPGA Master Implementation
3.2
Implementation of a Single-Precision Floating-Point Boundless Convolver
To provide an example of how the VSIPL constraints that allow for unlimited input and output vector lengths can be met, a boundless convolver is presented. Suitable for one-dimensional convolution and FIR filtering this component is implemented using single-precision floating-point arithmetic throughout.
The pipelined inner kernel of the convolver, as seen in figure 4, is implemented using 32 floating-point multipliers and 31 floating-point adders. These are Nallatech single-precision cores which are assembled from a C description of the algorithm using a C-to-VHDL converter. The C function call arguments and return values are managed over the DIMEtalk FPGA communications infrastructure.
The inner convolution kernel convolves the input vector A with 32 coefficients taken from the input vector B. The results are added to the relevant entry of the temporary result blockRAM (initialised to zero). This kernel is re-used as many times as is necessary to convolve all of the 32-word chunks of input vector B with the entire vector A. The fabric convolver carries out the largest convolution possible with the memory resources available on the device, a 16k by 32k convolution producing a 48k word result. This fabric convolver can be re-used by a C program on the host as many times as is necessary to realise the convolver or FIR operation of the desired dimensions. This is all wrapped up in a single C-function that is indistinguishable to the user from a fully software-implemented function.

[image: image4]
Figure 4 – Boundless Convolution System
The inner pipelined kernel and its reuse at the fabric level consist of a C-to-VHDL generated component created using the DIME-C tool from Nallatech. The “C” code used to describe the necessary algorithms is a true subset of C and any code that compiles in the C-to-VHDL compiler can be compiled using any ANSI-compatible C compiler without modification.

The design was implemented on the user FPGA of a BenNUEY motherboard. Host-fabric communication was handled by a packet-based DIMETalk network providing scalability over multi-FPGAs. SRAM storage took place using two banks of ZBT RAM. The FPGA on which the design was implemented was a Xillinx Virtex-II XC2V6000. The design used:

144 16k BlockRAMS (100%), 25679 Slices (75%) and 128 18x18 Multipliers (88%).
4
Results
The floating point convolver was clocked at 120MHz and to perform a 16k by 32k convolution took 16.96Mcycles, or 0.14 seconds to complete. Due to the compute intensity of this operation, host-fabric data transfer time is negligible. There is a 10x speed increase on the 1.4 seconds the same operation took in software alone. It should be added that the host PC used for comparison had an older microprocessor and perhaps does not offer the fairest comparison. One would expect a microprocessor to achieve close to its peak FLOPS for such an operation as simple 1-D convolution. This particular example is not intended as a demonstration of the superiority of FPGAs over microprocessors when dealing with floating-point algorithms.
There are 64 floating-point arithmetic units in use in this algorithm. Clocking at 120MHz the peak FLOPS for this architecture is 7.67 GFLOPS. Given that the data vectors are large and the algorithm is maximally pipelined, on average approximately 64 floating-point operations are being carried out each clock cycle. This means that the average FLOPS when running this design is approximately equal to the peak FLOPS.
The theoretical peak FLOPS that could be achieved clocking at 120MHz, using all resources on the V-II 6000, to implement Nallatech floating-point units is 16.3 GFLOPS.

5
Conclusions
FPGA-based VSIPL would offer significant performance benefits over processor-based implementations. FPGAs can easily outperform microprocessors when implementing floating-point algorithms. It has been shown how the boundless nature of VSIPL vectors can be overcome through a combination of fabric and software-managed reuse of pipelined fabric-implemented kernels. The resource demands of floating-point implemented algorithms have been highlighted and the need for resource re-use or even run-time fabric reconfiguration is stressed.

The foundations have been laid for the development environment that will allow for all VSIPL functions, as well as custom user algorithms, to be implemented.

6
Future and Related Work

Related to this work has been work carried out implementing a pulse compressor system. This system performs a fast fourier transform (FFT), a complex multiply and finally an inverse fast fourier transform (IFFT). This system worked on 4096 points and took 641.5us to run. This work investigated the alternative architectural possibilities detailed earlier in the paper, looking at the possibilities of the architecture shown in figure 2.
Future work will aim to implement a VSIPL application composed of several functions using FPGA-based algorithms. Double precision floating-point arithmetic shall also be investigated.

7
References

 [1]
Underwood K, Hemmert K, Closing the gap: CPU and FPGA trends in sustainable floating-point BLAS performance, Field-Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on (2004), pp. 219-228.
[2]
K. D. Underwood. FPGAs vs. CPUs: Trends in peak floating-point performance. In Proceedings of the ACM International Symposium on Field Programmable Gate Arrays, Monterrey, CA, February 2004.

[3]
Vector Signal Image Processing Library, VSIPL website, www.vsipl.org
[4] Craig Sanderson, Simplify FPGA Application Design with DIMEtalk, Xcell journal, winter 2004
[5]
Lebak, J. and Kepner, J. and Hoffmann, H. and Rutledge, E. The High Performance Embedded Computing Software Initiative: C++ and Parallelism Extensions to the Vector, Signal, and Image Processing Library Standard. Users Group Conference, 2004. Proceedings
PCI Host-Fabric Communication

� EMBED Equation.3 ���

Software Reuse of Fabric Convolver

Host PC

Xilinx Virtex-II XC2V6000 FPGA on ‘BenNUEY’ Motherboard	

DIMETalk Network

InputB[16k]

BlockRAM

Output[48k]

SRAM

InputA[32k]

SRAM

Temp_res[48k]

BlockRAM

C_storage[32]

Registers

� EMBED Equation.3 ���

Fabric-Level Reuse of Pipelined Kernel

� EMBED Equation.3 ���

Pipelined Convolution Kernel

[image: image5.wmf][?]

*

[?]

[?]

B

A

Y

=

[image: image6.wmf]]

16384

[

*

]

32768

[

]

49151

[

B

A

Y

=

[image: image7.wmf]]

32

[

*

]

32768

[

]

32799

[

C

A

X

=

[image: image8.wmf]]

32

[

*

]

32768

[

]

32799

[

C

A

X

=

[image: image9.wmf]]

16384

[

*

]

32768

[

]

49151

[

B

A

Y

=

[image: image10.wmf][?]

*

[?]

[?]

B

A

Y

=

_1187634988.unknown

_1187634989.unknown

_1187634987.unknown

