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Abstract
This paper presents a technique for automatic error correction of FSMs for single event upsets (SEU). We present a general technique of adding Hamming error checking bits to automatically recover from single bit errors within the same clock cycle. Experimental results demonstrate the efficacy of the method.
1 Introduction
FPGAs are increasingly being used for mission-critical applications in hazardous operating environments (space, military, medical etc.).  In these applications the circuit must be fault-tolerant, especially finite state machines (FSMs), where failures are very hard to detect [1]. Most single-fault-tolerant FSMs are implemented using triple module redundancy (TMR) or by using a single-error-correcting (SEC) code during state encoding [6, 7]. Typical instances of SEC employ a minimal encoding (binary, Gray, etc.) scheme to force a Hamming [2] distance of three. Commercially available FPGA synthesis tools [8, 9] only implement error recovery to a specified recovery state. They do not implement error correction. In this paper, we investigate a general technique of adding Hamming error checking bits to any encoding style of FSMs to automatically recover from single event upsets (SEUs) within the same clock cycle. We shall report on the efficacy of this method to correct single bit errors and an extension to detect two bit errors. Area and delay results of using this technique on selected designs are also reported.
Section 2 introduces the FSM model and the effect of single event upsets. Section 3 describes the use of Hamming error-checking bits to automatically correct single bit errors. The experimental technique is presented in Section 4. Results on selected FSM examples are presented in Section 5. Section 6 discusses the current status and future work.
2 FSM Model and Single Event Upsets
A finite state machine is defined to be a 6-tuple [10]:
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where:

I is a finite nonempty set of inputs; O is a finite nonempty set of outputs; S is a finite nonempty set of states; 
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is the state transition function; 
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is the output function; and s0 is the initial state. Figure 1 shows the hardware model of an FSM. An FSM is typically modeled as a set of state registers to store the state vector, combinational state decode for the next-state and output logic.
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Figure 1: FSM Model

Consider an FSM with five states S0, S1, S2, S3, and S4 encoded using a binary or sequential encoding. The encodings are displayed in Figure 2:

S0
000

S1
001

S2
010

S3
011

S4
100

Figure 2: Example FSM Encoding
If the FSM state register experienced a single event upset, say in state S0, it could place the FSM in states S1, S2, or S4 depending on which bit of the state-register experienced the upset. It is hard to determine if the current state is a result of a valid state transition or the result of a single event upset. It is hard to recover from such upsets because the upset actually placed the FSM in a legal state. If the FSM had transitioned from S4 to states 101 or 110, it would have been easier to detect the illegal transition and recover from the illegal state.
3 Error Correction

We use a Hamming error-correcting code [1, 2, 3, 10]. To the n encoding bits, k parity checking bits are added to form an (n + k)-bit code. The location of each of the bits in the new code is assigned a decimal value starting at 1 for the most significant bit and n + k  to the least significant bit. k parity checks are performed on selected bits of each encoding. The result of each parity check is recorded as 1 if an error has been detected or 0 if no error has been detected.
The number of parity bits k must satisfy the inequality 2k
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. The parity checks are performed such that their value when an error occurs is equal to the decimal value assigned to the location of the erroneous bit, and is equal to zero if no error occurs. This number is called the position number.
The parity checking bits are placed in positions 1, 2, 4, …, 2k-1 such that they are independent of each other and encoded only in terms of the encoding bits. Consider the example in Figure 2, the original encoding uses three bits (n=3), then k = 3 satisfies the above inequality, thus three parity bits must be added to the encoding bits to generate the error correcting code.
The position numbers are shown in Table 1. From the table we observe that an error in position 1, 3, or 5 should result in a 1 in the least significant bit (c0) of the position number. Hence, the code must be designed to have digits in position 1, 3, and 5 to have even parity. If a parity check of these bits shows an odd parity, the corresponding position number bit (c0) is set to 1, otherwise to 0. Also, from the table we observe that an error in position 2, 3, or 6 should result in the center bit (c1) being set to 1 and an error in position 4, 5, 6 should result in the most significant bit (c2) being set to 1.
Table 1: Position Numbers

Error position

Position number




c2  c1 c0
0 (no error)                 0   0   0

1                                  0   0   1

2                                  0   1   0

3                                  0   1   1

4                                  1   0   0

5                                  1   0   1

6                                  1   1   0

The parity bits are chosen as follows:

p1 is selected to establish even parity in bits 1, 3, 5.

P2 is selected to establish even parity in bits 2, 3, 6.

P3 is selected to establish even parity in bits 4, 5, 6.

Table 2: Hamming code for FSM

Position
1     2     3     4     5     6

                         p1   p2   e2    p3    e1    e0
                         0     0     0     0     0     0

                         0     1     0     1     0     1

                         1     0     0     1     1     0

                         1     1     0     0     1     1

                         1     1     1     0     0     0

Table 2 shows the Hamming code for the example FSM from Figure 2.

The error location and correction is performed by computing the parity checks and determining the position number. For example, if we assume that bit zero of the encoding (e0) of state S0 is inverted (SEU), the new code is: 000001. The three parity checks yield the following position number bits:
4,5,6 parity check: 0 0 1; parity check is odd; c2 = 1.

2,3,6 parity check: 0 0 1; parity check is odd; c1 = 1.

1,3,5 parity check: 0 0 0; parity check is even; c0 = 0.

The position number c2c1c0 is 110, which means that the location of the error is in position 6. To correct the error, the bit in position 6 is inverted, and the correct encoding 000000 is obtained.
The error correction outlined in this section has been implemented to handle any encoding style and is automatically inserted for FSMs.

4 Experimental Technique
We collected seven sample FSM designs (in VHDL) with varying complexity with regards to number of states, inputs, and outputs. We added error correction to the FSMs and wrote out a VHDL description with the correction logic (after logic synthesis).
We generated a test-bench with a thousand random test vectors. We simulated the original FSM description and forced one of the state-bits in the synthesized VHDL to a constant value and simulated it and compared the outputs of the original and synthesized designs. The outputs were identical because the single bit error was corrected. We conducted the same experiment by forcing one of the parity bits, we observed the same behavior, because the single bit error was corrected.

We then forced two state bits (two parity bits) and re-simulated the synthesized design and now we observed differences between the original and synthesized designs. The two bit errors actually produced functional errors whereas the single bit errors were corrected.
The other experiment compared the area and delay results of this technique with the more common usage of TMRs.

5 Results
Results on a set of example FSMs is presented in this section.
Use Darren’s tables and graphs here.
6 Discussion
We discuss the current status and future extensions.
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