

APOLLO

GUIDANCE AND NAVIGATION SYSTEM

LUNAR MODULE

STUDENT STUDY GUIDE

PRIMARY GUIDANCE, NAVIGATION AND CONTROL

SYSTEM COURSE 3100

COMPUTER UTILITY PROGRAMS C3100

PREPARED BY

AC ELECTRONICS

DIVISION OF GENERAL MOTORS

MILWAUKEE, WISCONSIN

15 JANUARY 1967

PREFACE

This student study guide has been prepared by AC Electronics in responee to:

Contract NAS 9-497

for

System Assembly and Test, Inertial

Meaeurement Unit, Coupling Display Unit

Power and Servo Assembly - Project APOLLO

0 This study guide contains training material and should be used for instruction purposes only.

TABLE OF CONTENTS

Page

1-1/95
1-1

Section I General Computer Programming Concepts

Block 1 . 1 The Development of the Computer Program

Block 1 . 2 The Computer's Real Time Environment

Block 1 .3 Time Sharing the Computer Hardware

Block 1 . 4 Implementing the Time Sharing of the Computer
1.4. 1 Counter Interrupts
1.4. 2 Program Interrupts
1 . 4 . 3 Program Controlled Processing

Block 1. 5 Relative Priorities of the Types of Processing

Block 1.6 Scheduling and Execution of Program Controlled Processing
on the Basis of Program Priority

1.6.1 Introduction
1 . 6 . 2 Terminology
1 . 6 . 3 Scheduling
1 . 6 . 4 Execution Control
1.6. 5 Core Set Areas and VAC Areas

1.6 . 5. 1 Core Set Areas
1 .6 .5 .2 VAC Areas

Block 1 . 7 Scheduling and Execution of Time Dependent Processing
1 . 7 . 1 Introduction
1.7 .2 Implementing Time Dependent Functions
1 . 7 . 3 Scheduling of Time Dependent Functions
1. 7 . 4 Execution of Time Dependent Functions

Block 1 .8 LGC Input and Output Channel Interface
1. 8. 1 Channel 01
1. 8 .2 Channel 02
1.8.3 Channel 03 High-Order Scaler
1 . 8 . 4 Channel 04 bw-Order Scaler
1.8.5 Output Channel 05
1.8.6 Output Channel 06
1 . 8 . 7 Output Channel 07
1.8. 8 Output Channel 10
1. 8 .9 Output Channel 11
1. a. 10 Output Channel 12
1.8. 11 Output Channel 13
1.8.12 Output Channel 14
1 .8 .13 Input Channel 15
1. 8. 14 Input Channel 16
1. 8. 15 Input Channels 17 through 27

1-1

1-2

1-2
1-2
1-3
1-3

1-6

1-6
1-6
1-6
1-8
1-8

1-10
1- 10
1- 10

1- 10
1-10
1- 12
1-12
1- 12

1- 13
1- 13
1- 13
1- 13
1-13
1- 13
1- 13
1- 13
1- 13
1- 14
1-14
1- 14
1- 15
1- 15
1- 15
1-15

TABLE OF CONTENTS (cont)

1 . 8 . 1 6 Input Channel 30
1. 8. 17 Input Channel 31
1 . 8 . 1 8 Input Channel 32
1 . 8 . 1 9 Input Channel 33

Block 1 . 9 Computer/DSKY - Hardware/Astronaut Relationship
1 . 9 . 1 Keyboard
1 . 9 . 2 Display Indicators
1 . 9 . 3 DSKY Condition Indicators
1 . 9 . 4 DSKY Operation

1 .9 .4 .1 Verb-Noun
1 . 9 . 4 . 2 Data Loading
1 . 9 . 4 . 3 Correcting Erroneous Data
1. 9. 4 . 4 Decimal and Octal Display and h a d i n g
1 . 9 . 4 . 5 Monitor vs. Display
1 . 9 . 4 . 6 Changing of Major Mode
1 . 9 . 4 . 7 Mode Initiation
1.0 .4 .8 ,Computer Control of the DSKY
1. 9. 4. 9 DSKY/Computer/Operator Interlocks

1. 9. 5 Verb-Noun List
1 .9 . 5. 1 Verb Codes
1.9 . 5. 2 Verb Deecription
1.9. 5 .3 Noun Codes

Block 1.10 Interrelationship of Processing Functions

Section I1 Executive Control of Computer Processing

Block 2 . 1 The Executive Routine
2. 1 . 1 FINDVAC and NOVAC Subroutines
2 . 1 . 2 Change Job Subroutine
2 . 1 . 3 End of Job, Job Sleep, and Priority Change Subroutines
2. 1 . 4 Dummy Job Subroutine
2. 1 . 5 Job Wake Subroutine

Block 2 . 2 Waitlist Routine

Block 2 . 3 TIME 3 Program Interrupt Routine (T3RUPT)

Block 2 . 4 Phase Table Maintenance Routine
2.4. 1 Phase Change and New Phase Subroutines
2 . 4 . 2 New Mode Exchange Subroutine
2 . 4 . 3 Check Major Mode Subroutine

Page

1-16
1-16
1-17
1-17

1-18
1-18
1-20
1-22
1-22
1-22
1-25
1-26
1-27
1-27
1-27
1-28
1-29
1-29
1-30
1-30
1-33
1-36

1-40

2- l/Zb
2-1
2-1
2-6
2-8

2-10
2-12

2-14

2-20

2-22
2-22
2-24
2-24

TABLE OF CONTENTS (cont)

Page

Section IU Input/Output Control Routines

Block 3 . 1 TIME 4 Counter Program Interrupt Routine (T4RUPT)
3 . 1 . 1 T4RUPT h a d In, 20, 30 MSEC RUPT, Service DSPTABS
3 .1 .2 A LTOUT
3 . 1 . 3 ALTROUT
3 . 1 . 4 RR AUT CHK (Rendezvous Radar Automatic Check)
3. 1 . 5 IMU Monitor

Block 3 .2 Downtelemetry (DNRUPT)

Block 3 .3 Keyboard and Uplink Telemetry Input Processing Program
3 . 3 . 1 DSKY and Uplink Interrupt Operation
3 . 3 . 2 The Pinball Program

3 . 3 . 2 . 1 C HARIN
3 . 3 . 2 . 2 NOUN Subroutine
3 . 3 . 2 . 3 VERB Subroutine
3 . 3 . 2 . 4 SIGN Subroutine
3 . 3 . 2 . 5 NUM Subroutine
3 . 3 . 2 . 6 CHARALRM Subroutine
3.3 . 2 . 7 ENTER Subroutine
3 . 3 . 2 . 8 Error Reset Subroutine
3 . 3 . 2 . 9 Key Release Subroutine
3 .3 .2 .10 Clear Subroutine

Block 3 . 4 ISS Mode Switching Routines
3 . 4 . 1 JSS CDU Zero
3 . 4 . 2 IMU Coarse Align
3. 4 . 3 IMU Fine Align

Block 3. 5 IMU Pulsing Routine

Block 3 . 6 AOTMARK Routine
3.6. 1 Alignment Optical Telescope (AOT)
3 . 6 . 2 Non-flight Star Sighting
3 . 6 . 3 Inflight Star Sighting
3 . 6 . 4 AOTMARK Routine

Section IV Miscellaneous Routines

Block 4.1 Program Alarm Routine

Block 4 . 2 Program Abort Routine

Block 4 . 3 Fresh Start and Restart Routine

3 - 11%'

3-1
3-2
3-7
3-7
3-7
3-8

3-40

3-48
3-49
3-53
3-53
3-53
3-65
3-65
3-66
3-67
3-67
3-69
3-69
3-69

3-70
3-70
3-70
3-76

3-79

3-86
3-86
3-86
3-86
3-88

4-1/46
4-1

4-6

4-6

TABLE OF CONTENTS (cont)

Page

Block 4 .4 Self-check Routine
4 .4 .1 Self-check Options
4.4.2 Error Detection
4.4.3 DSKY Check
4.4.4 How to Use the DSKY to Monitor Self-check
4.4.5 Self Check Flow

Appendix A

Computer Programs

Appendix B

Explanation of Sample Program Listing

Appendix C

Interpretive Programming

4-15
4-15
4-17
4-19
4-19
4-21

B - 4 4

c-1/31

Figure

1- 1
1-2
1-3
1-4

1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-11A
1- 12

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2- 10
2-11
2-12
2- 13
2- 14
2- 15

3- 1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3- 12
3- 13
3- 14
3- 15
3- 16
3- 17
3-18
3- 19
3-20
3-21

LIST OF ILLUSTRATIONS

Counter Interrupt Processing
Program Interrupt Processing
Counter and Program Interrupt Processing
Control of Program Controlled Processing on Basis of Program
Priority Numbers
Core Set Areas of the Computer Program (Core Set List)
VAC Areas of the Computer Program
Channel 07 Fix Extension Bits
Radar Selection
Gyro Selection
Display Indicators
DSKY Display Relay Circuitry
DSKY Display Indications
Simplified Processing for Zero IMU - CDU Routine

Executive's Core Set List
Executive's VAC Areas
Executive's FINDVAC and NOVAC
Executive's Change Job
Executive's Priority Change, End of Job and Job Sleep
Executive's Dummy Job
Executive's Job Wake
Waitlist's Waiting List
Time Values Stored in List 1
Maintaining Chronological Waiting List
Waitlist
TIME 3 Interrupt Routine
Phase Change and New Phase
New Mode Exchange
Check Major Mode

General T4RUPT
DSPTAB Code
Detailed T4RUPT
Computer Interface with Telemetry
Downtelemetry Transfer
Downtelemetry General Computer Format
Nominal Downlink List, Sunburst, Rev 14
Downrupt
General Flow Diagram for Pinball
INLINK Word Format
KEYRUPT and UPRUPT
CHARIN
ISS CDU-ZERO
IMU Coarse Align
IMU Fine Align
IMU Pulsing
Generation of Merged Word
LM AOT Azimuth Positions
AOT Reticle Pattern
Basic Inflight Star Sighting Sequence
AOTMARK Routine

Page

1-4
1-5
1-7

1-9
1-11
1-11
1-14
1-14
1-15
1-21

1-22A
1-22B

1-42

2-2
2-3
2-5
2-7
2-9

2- 11
2-13
2-15
2-16
2-18
2-19
2-21
2-23
2-25
2-26

3-3
3-6

3-10
3-41
3 -42
3 -43
3-44
3-46
3-50
3-51
3-52
3-54
3-71
3-73
3-77
3-80
3-85
3-87
3-87
3-87
3-90

Fig

4- 1
4-2
4-3
4-4
4-5

4- 6
4-7
4-a

APl
A-:
A-:
A 4
A-!
A-E
A-f
A-7

B- :

API
C-:
C-;
C-I

a

pure

I

I

I

I

lendix A

1
3
3
I

3
I

)

xndix B
1

lendix C

1
1
3

LIST OF ILLUSTRATIONS (cont)

Page

Program Alarm
Program Abort
Fresh Start and Restart
Self Check Options
Count Regieters and Self Check Error Detection
with f 10 or -0 in SMODE
Self Check Error Detection with *l - kt7 in SMODE
Self Check with * 11 in SMODE
Self Check

SQ Register
Memory to SQ Register Transfer
Order Code Determination
Subinstruction ADO, Data Transfer Diagram
Subinstruction STDB, Data Transfer Diagram
Subinstruction RSM3, Data Transfer Diagram
Subinstruction NDXO, with implied Address Code RESUME,
Data Transfer Magram

Sample Program Listing

Network Mapping Symbols
Interpretive Routing Flowgram
Ynterpretive Program Flow

4- 2
4- 7
4- 8

4- 16

4- 18
4-20
4-20
4-2 a

A- 2
A- 11
A- 12
A- 15
A- 16
A- 17

A- 18

B- 1

c-7
C-8

c- 12

Table

1-1
1-2
1-3
1-4
1-5

3-1
3-2
3-3
3-4

4-1
4-2
4-3

Appendix A

A- 1
A-2
A-3

LIST OF TABLES

Page

Channel Assignments LM
DSKY Puehbuttons
Display Indicators and Functions
DSKY Condition Indicators
System Test Codes (VERB 57)

The 12-Word Display Table Bit Assignments
RADMODES - Channel Correlation
IMODES 30 - Channel 30 Correlation
IMODES 33 - Channel 33 Correlation

Failure Numbers for Program Alarms
Failure Numbers for Program Aborts
Erasable Addresses Checked in SOPTION 4

Machine Instructions, Alphabetical Listing
Quarter and Eighth Codes
Interpretive Instructions

1-13A
1-19
1-20
1-23
1-36 ,

3-5
3-38
3-39
3-39

4-4
4-13
4-25

A-3
A- 13
A- 19

OBJECTIVES

The intent of this study guide is to give the student an understanding of the basic utility
programming concepts associated with the LM computer. The programs described in this
study guide a re utility programs which, for the most part, are used in conjunction with all
computer operations and include the basic executive routines, input/output routines and
miscellaneous service routines along with basic programming techniques.

This study guide is organized in the sequence of instruction of the course and is divided into
four major sections. Each of these sections is associated with the LM peculiar programs.

The objectives of this study guide are to provide the student with:

a. Course materials organized in the sequence of classroom presentation for self-study.

b. A familiarity of the overall utility programs associated with the LM computer.

REFERENCES

The following documents were used in preparation of this study guide:

Digital Development Operating Procedures for AGC Block I1 Self Check and
Report 9 Show-Banksum

Revision 14 of Program SUNBURST Dated 9 September 1966

ND-1021042 Apollo Lunar Excursion Module Primary Guidance,
Navigation, and Control System

Digital Development Block I1 Channel Assignments
Memo # 254, Rev. B

SECTION I

GENERAL COMPUTER PROGRAMMING CONCEPTS

INTRODUCTION

This section presents the general programming concepts as used in the Apollo computer.
Included is (1) a discussion of the development process of the computer program, (2) the
real-time environment in which the computer operates, (3) time sharing of the computer
among its processing functions, (4) the scheduling and implementation of program con-
trolled processing functions, (5) the scheduling and implementation of time dependent
program controlled processing functions, and (6) a general discussion of the computer's
relationship with its hardware and human environment. Also included is (7) a brief dis-
cussion of the interpretive programming technique used in the computer. \

1 .1 THE DEVELOPMENT OF THE COMPUTER PROGRAM

The development of the total program capability for the Apollo computer, has been, and will
continue to be an evolutionary process. This is true because changes in hardware design,
mission, interface, eta., which must be reflected in the program of the computer and also
the magnitude of the job of programming the computer.

In this evolutionary process, several groups of programs have been released. Each group

programs o r routines. Also, each of the groups of programs have had many revisions to
the programs contained within the group.

0 of programs has superseded the previous group and has contained more of the required

The first .major series of programs which have been released for the Block II Command
Module and LM computers (CMC and LGC), was called RETREAD. Basically, RETREAD
converted Block I computer utility programs to Block II language and updated the various
routines. RETREAD was followed by the AURORA (L M) and SUNDIAL (Command Module)
series of programs. These two programs built on the foundation set by RETREAD and
branched out in there respective directions to encompass programs associated only with the
Command Module or LM. This etudy guide is based on the Sunburst Computer Program for LM,

Future programs will be based on the foundation developed by this series of programs. Each
new group of programs will add to those programs contained in its immediate predecessor
reflecting changes to previous programs deemed necessary by equipment changes in the
PGNCS, mission, etc. Through this progression, the final computer program will be
obtained and will afford the designers, programmers and users of the PGNCS a high degree
of confidence in the computer programs.

1.2 THE COMPUTER'S REAL TIME ENVIRONMENT

The computer operates within the spacecraft and specifically within the PGNCS. Various
, systems on board the spacecraft interact with the computer to enable the required functions
~ to be performed, thereby enabling the mission to be accomplished. All systems within the

spacecraft operate on a real time basis, and therefore, the computer must also operate on a
real time basis keeping cognizant of the happenings in this environment. Based on these 0 happenings or conditions which exist at any particular time, the computer must determine if
an action is required, and if it is, what must be done.

i

1- 1

Inputs to the computer are derived from the PGNCS Inertial Subsystem, Optical Subsystem
and Computer Subsystem. Also, inputs to the computer a r e derived from the Stabilization
Control System, the Communication and Instrumentation System, etc. The inputs from
these systems and subsystems may change at any time and the computer must be able to

' cope with them within a reasonable period of time.

Outputs from the computer are routed to the three subsystems of the PGNCS along with
direct outputs to the Central Timing Equipment, Communications and Instrumentation
System andto the 'Stabilization and Control System. The computer is also capable of con-
trolling the outputs of the inertial subsystem of the PGNCS to the Stabilization and Control
System. The outputs to these systems must correspond to the happenings o r conditions
which exist at any particular time in order that the computer effectively copes with the
situation and fulfills its role in the spacecraft.

1 .3 TIME SHARING THE COMPUTER HARDWARE

The computer operates in an environment in which many parameters and conditions change
in a continuous manner. The computer, however, operates in a discrete, incremental
manner, operating on only one item at any instant in time. Therefore, in order for the
computer to process the many parameters and conditions, and perform its function in the
PGNCS and spacecraft, the computer hardware must be time shared. The time sharing of
the computer hardware is accomplished by assigning priorities to the various processing
functions required of the computer. These priorities are used by the computer so that it 0 processes the highest priority processing function required at any particular time.

1.4 IMPLEMENTING THE TIME SHARING O F THE COMPUTER

As previously stated, the basis for the time sharing of the computer is the priority of the
processing functions requiring processing. The implementation of the time sharing is
accomplished through one of three methods which are:

a. A pure hardware function. (Counter interrupts)

b. A hardware and program control function. (Program interrupts)

c. A pure program control function. (Program controlled processing)

Each of these three groups has a relative priority with respect to the other groups;
also, within each of the groups there a re a number of processing functions, each having
a priority level relative to the other functions within the group. The majority of the
processing performed by the computer falls into a pure program control processing
category. In this category the computer hardware is controlled by the program stored
in the computer's memory.

1.4.1 COUNTER INTERRUPTS. The processing performed by the computer which is
accomplished under control of the computer hardware is referred to as a counter
interrupt. This processing handles items such as A V pulses from the PIPA'S, A 8
pulses from the CDU's, L! time pulses from the computer timing circuitry, and control
pulse outputs from the computer used to position the stable member of the IMU.

1-2

Whenever one of these pulse inputs is present, any other processing being performed by
the computer is temporarily suspended or interrupted. Then the input pulse is pro-
cessed under control of the computer hardware. After the input pulse is processed,
control of the computer hardware is returned to the program controlled processing
which was suspended. (See figure 1-1.) The processing of one of these input pulses
requires approximately 12 microseconds.

Through the processing of the counter interrupts, the computer accumulates data such
as velocity, IMU gimbal angles, radar angles and the number of computer pulse outputs
developed to position the stable member.

1.4.2 PROGRAM INTERRUPTS. The processing performed by the computer which is
controlled through both circuit and program controlled processing functions is referred
to as program interrupt. This type of processing is performed whenever a particular
condition exists, either internal o r external to the computer. The conditions which
cause a program interrupt are:

a. Timing of reaction control system.

b. Time to process a routine scheduled to be processed at a particular time.

c. Time to process a routine which performs computer input/output functions.

d. An input from the DSKY o r MARK pushbuttons. e e. Time to load a new DOWNLINK telemetry word.

f. Time to process an UPLINK word.
g. Time to process an attitude or tranelation controller input.
h. Time to process a radar input.
The processing of one of these conditions is initiated whenever the condition exists.
The initiation of the processing is accomplished by a circuit function which forces
control of the computer hardware to a particular program controlled processing routine.
The program controlled processing function being processed at the time when a program
interrupt occurs is suspended and control of the computer is forced to the routine
corresponding to the program interrupt condition which exists. (See figure 1-2.) The
program interrupt routine then processes whatever is required, depending on the
program interrupt condition present. After completing the required processing for the
program interrupt, control of the computer hardware is returned to the suspended
program.

1.4 .3 PROGRAM CONTROLLED PROCESSING, Most of the time, the computer's
hardware is controlled by the program stored in its memory. Of the many routines
o r processing functions that the computer is capable of processing, some means must
be employed to enable the computer to process the routines required at any one time,
and to process the most important required routine first.

1- 3

A T l M E FROM
TIMER m

A8 FROM ICDU's m

A@ FROM R C D U ~ m

AV FROM PIPA's U

RHC CONVERTER e COWCTER
INTERWPT
SEiMCE

UPLINK DATA 0

RADAR DATA e

CONTROL PULSE
OUTPUTS TO IRIG's 5
CDU's

THRUST CONTROL *

LEM MONITOR (SPARE) m

DOWNLINK Ir

CONTROL PULSE
OUTPUTS TO
ALT/ALT RATE
METER

COMPUTER em nmow-
U U U : USAGE TO

PROGRAY
CONTROL

17502

Figure 1-1. Counter Interrupt Processing

TIME DEPENDENT
TASK CONTROL

TIME FOfl INPUT/
OUTPUT

KEYBOARD INPUT INTERRUm
SERVICE

MARK ,-I
DOWNLINK TELEM.
WORD REQUIRED I
UPLINK WORD
ASSEMBLED

ATTITUDE OR
TRANSLATION
CONTROLLER

RADAR DATA

P R o c l u y
CL)CJTFWLLED ."""" *

FOUCED SUSPENSION pcIoc~:ssIm
OF PROGRAM CONTROLLED
PROCESSING

r
1

COMPUTER
HARDWARE
W E

I

Figure 1-2. Program Interrupt Processing

RRWIN
HI"
USAGE TO
PFIOGRAY
CONTROL

17583

In order for a routine or program controlled processing function to be performed, it
must first be scheduled. The scheduling of a particular routine o r processing function
is a function of another routine o r processing function. The scheduling also can be
initiated through the DSKY. At the present time, the computer is capable of having
upto seven routines, usually referred to as ttjobstf, scheduled to be done at one time.
The job which is processed out of the possible aeven scheduled job8 is determined by
the priority numbers assigned to the jobs. If a job is scheduled having a priority
higher than the job being processed, the computer suspends the processing of the
lower priority job and processes the higher priority job. When the higher priority job
is completed, the control of the complter hardware returns to the lower priority job
at the point where it was suspended. Using the scheduling of jobs and the priority
assigned to the various jobs, the most important program controlled processing function
is performed at any time.

1 . 5 RELATIVE PRIORITIES OF THE TYPES O F PROCESSING

A s previously stated, each of the three types of processing (counter interrupt, program
interrupt and program controlled processing) have relative priorities. Of the three types,
the counter interrupt processing is the highest priority processing function. A counter
interrupt input, which requires processing, causes the processing of either a program
controlled function or program interrupt to be suspended. After processing the counter
interrupt, control is returned to the processing which was suspended. (See figure 1-3.)

Program interrupts are the next highest priority type of processing. This type of pro-
cessing causes the suspension of any program controlled processing. A program interrupt
cannot interrupt o r suspend the processing of a counter interrupt or the processing of
another program interrupt. However, through program action, an inhibit can be set so that
the program interrupt processing cannot interrupt the program controlled processing.

The program controlled processing is the lowest priority type of processing. Any counter
interrupt o r program interrupt processing causes the program controlled processing to be
suspended. The exception to this, a s stated above, is when the honoring of a program
interrupt is inhibited through program action. The program interrupts would be inhibited if
some fairly critical function was being performed through program controlled processing.

1.6 SCHEDULING AND EXECUTION O F PROGRAM CONTROLLED PROCESSING ON THE
BASIS O F PROGRAM PRIORITY

1 .6 .1 INTRODUCTION. The processing of program controlled processing functions,
as previously stated, is controlled on the basis of the priority assigned to the pro-
cessing functions. However, a program controlled processing function cannot be
processed unless it has been scheduled. In the following paragraphs, the scheduling
and control of program controlled processing functions is discussed.

1.6 .2 TERMINOLOGY. Prog-ram controlled processing function is a term which has
been used up to this point in the study guide to refer to program routines, subroutines,
etc., which control the processing of various functions. Any one of these categories
can be scheduled to be processed on a priority basis. These programs, routines,

. etc. , which require scheduling in order to be processed a r e referred to as JOBS.

1-6

I I I
I
L”“- ” A

1-7

e 1.6 .3 SCHEDULING. Scheduling of a job must be performed under control of another
job or program interrupt routine. Whichever type of processing function schedules a
job, the scheduling process is the same.

Whenever a job o r routine wishes to schedule a job, it uses a routine of the computer
program called the EXECUTIVE. The scheduling job or routine, referred to as the
calling program, must supply the Executive routine with the priority number to be
assigned and the starting address of the job being scheduled. The Executive routine
uses these two quantities to schedule the job. The priority number is then used to
control when'the job is processed and the starting address is used to route control of
the computer to the starting point of the job. The actual scheduling of the job is
accomplished by the Executive routine inserting the priority number and starting
address into a position on the core set list which the Executive maintains. At the
present time, the Executivefs core set list provides for scheduling up to seven jobs at
any one time. The core set list is used by the Executive routine to control which of
the scheduled jobs is processed based on their priority numbers. The highest priority
scheduled job is processed at any one time.

1.6.4 EXECUTION CONTROL Whenever a job is scheduled the priority number
assigned to the job can be equal to, higher than or lower than the priority number
of the job presently being processed. If the newly scheduled job's priority is
equal to or lower than the priority of the job presently being processed, the
processing of this job continues. When this job ha8 been completed, it is removed
from the core set list. A t this time, the core set list is scanned to find the
scheduled job with the highest priority. After finding the highest priority job,
processing of the job is initiated if no processing of the job has been accomplished,
or is resumed if a protion of the job had already been processed. (See figure 1-4.)

However, i f a job is scheduled which has a priority higher than the job presently being
processed, processing of the newly scheduled higher priority job must begin. The job
presently being processed is suspended and left uncompleted when the processing of
the higher priority job initiated. After all of the jobs of higher priority than the one
just suspended are completed, processing of this lower priority job is resumed.
Processing is resumedat the point in the job where processing was suspended. No
reprocessing is required when the processing of a job is resumed.

Most jobs, in the course of being processed, must wait for information to be loaded
into the complter o r for an action external to the computer to occur. In general,
the job cannot continue until the required information is loaded or the action has
occurred. When instances as these occur during the processing of a job, it is desirable
to deactivate the job while it is waiting rather than having a reiterative waiting loop as
part of the job. By deactivating a job, the processing of lower priority jobs can be
accomplished. The act of deactivating a job does not remove the job from the core set
list and therefore remains scheduled. This process of deactivating a job is termed
'"putting a job to sleep".

I When the required information has been loaded or the action has occurred, the job is re-

~ required action has occurred. The process of reactivating a job is termed "waking up
activated. The job can then use the information that was loaded o r continue on since the

a job". It should be noted that a job can put itself to sleep but another job o r routine is
required to wake it up. (This is the same relationship which exists between you and your
alarm clock.)

1-8

JOB 'A'
PRIORITY "BER
IO
SCHEW&E
JOB 'e' WITH
eRHwTv MJM6ER
IS

JOB'A' IS NOT HIGHEST PRIORITY
TRANSFER CONTROL T O
EXECUTIVE CONTROL

IF JOB 'A' IS HIGHEST
PRIORITY JOB, PROCESSING
RESUMES A T POINT IN
ROUTINE WHERE PROCESSING
WAS S U S P E N D E D

WHEN JOB'B' IS C O M P L E T E D C O N T R O L
RETURNED To MOCUflVE COUTROL 17585

Figure 1-4. Control of Program Controlled Processing on Basis of
Program Priority Numbers

1 . 6 . 5 CORE SET AREAS AND VAC AREAS. The capability of the computer to suspend
and deactivate jobs and resume processing at the point where they were suspended or
deactivated is made possible by the storage provided by the CORE SET AREAS and VAC
AREAS (Vector Accumulator Area). These two areas provide storage for the informa-
tion of a job while it is being processed. A CORE SET AREA or both a CORE SET AREA
and a VAC AREA are reserved for use for every scheduled job. An area reserved for a
particular scheduled job cannot be used by another job. Therefore, with all of the
information being processed by a job stored in the reserved CORE SET and VAC areas,
a job can be suspended o r deactivated and the processing can be resumed at the point in
the job where it was suspended o r deactivated.

1.6.5.1 Core Set Areas. The CORE SET AREAS of the computer program are
an integral part of the core set list. Each of the seven CORE SET AREAS
consists of twelve sequential memory registers. One of the twelve is used for
storing the priority number and the VAC address associated with the job. The
priority in this register signifies that the CORE SET AREA is reserved. A mem-
ory register used for storing the starting address of the job, when the job is
originally scheduled, will store the resumption address of a job which has been
suspended or deactivated. The other memory registers are used to store infor-
mation concerned with the job using the CORE SET AREA. (See figure 1-5.)

1 .6 .5 .2 VAC Areas. Some jobs o r programs of the computer require more
storage capability than is provided by the core set area. One type of job
which requires more storage a re those jobs involved with the processing of vector
quantities. Double o r triple precision? three component representation is used
for most vector quantities in the computer. (Double and triple precision repre-
sentation uses two o r three computer words to represent one quantity.) Therefore,
vector quantities require up to nine memory registers for storage. Besides the
vector quantity, other information associated with a particular job must be stored.
In order to meet the storage capacity required for these type of jobs, an additional
block of memory registers can be reserved for a job. The computer program now
provides for five blocks, with each block containing 44 memory registers. These
blocks of memory registers a re called VECTOR ACCUMULATOR AREAS or , in
short, VAC AREAS. If a VAC AREA is required by a job, one of the five is
reserved for the job along with one of the CORE SET AREAS. (See figure 1-6.)

Again, since a particular VAC AREA is reserved for use by a particular job,
and since information being processed by the job is stored in the VAC AREA
and CORE SET AREA, the processing of a job can be resumed at the point in
the processing where it was suspended o r deactivated. It should also be noted that
with the seven CORE SET AREAS and the five VAC AREAS, sufficient scheduling
and storage capacity is provided to handle the processing loads imposed on the
computer.

1 . 7 SCHEDULING AND EXECUTION O F TIME DEPENDENT PROCESSING

1 .7 .1 INTRODUCTION. Some processing functions and corresponding output functions
of the computer require a rather stringent consideration of time. In order to accommo-
date this consideration, a job or routine which controls a processing o r output function
must be initiated at a specific time. This could be accomplished by having incorporated,

1- 10

CORE SET 60

CORE SET 61

CORE SET IC6

CORE SET 85

ADDRESS, ETC. CORE SET #4

- THE REMAINING FIVE MEMORY REGISTERS ARE USED TO CORE SET 63

JOB USING THE CORE SET AREA. CORE SET 62

MEMORY REGISTERS, SEVEN OF WHICH ARE USED FOR
- EACH CORE SET AREA CONSISTS OF TWELVE (DECIMAL)

STORAGE OF QUANTITIES PERTAINING TO THE SCHEDULED

k

STORE INFORMATION ABOUT THE JOB; PRIORITY, STARTING

.

Figure 1-5. Core Set Areas of the Computer Program (Core Set List)

VAC AREA #1

VAC AREA #2

VAC AREA #3

VAC AREA #4

VAC AREA #5

- A VAC AREA (VECTOR ACCUMULATOR) PROVIDES 44 (DECIMAL)
MEMORY REGISTERS FOR STORAGE OR INFORMATION
PERTAINING TO THE JOB FOR WHICH IT WAS RESERVED.

- JOB, ESPECIALLY THOSE INVOLVING VECTOR QUANTITIES
REQUIRE MORE STORAGE CAPACITY THAN IS AFFORDED
BY THE CORE SET AREAS

- IF A VAC AREA IS REQUIRED FOR A JOB, BOTH A VAC
AREA AND A CORE SET AREA MUST BE RESERVED FOR
THE JOB.

Figure 1-6. VAC Areas of the Computer Program

1- 11

as part of a job, a waiting loop which would continuously look at the computer's real time
reference, TIME 1 and TIME 2 counters. If this method was used, a considerable
amount of computer time would be wasted. Another method of time scheduling and
execution of functions as used in the computer is discussed in general terms in this
portion of the study guide.

1 . 7 . 2 IMPLEMENTING TIME DEPENDENT FUNCTIONS. The computer, in imple-
menting the time dependent initiation of various processing functions, utilizes the TIME
3 counter. This counter is incremented at 10 m. s . intervals through the counter
interrupt priority control circuitry of the computer. By setting the TIME 3 counter to
overflow at the time a specific function is to be performed, the overflow condition of the
TIME 3 counter indicates when a function is to be performed. When the TIME 3 counter
is in an overflow state, the T3RUPT program interrupt routine is initiated. This routine
uses the starting address stored by the scheduling job to transfer control of the com-
puter's processing to the routine which controls the processing o r output function which
is required a t this specific time.

Implementing the initiation of a time dependent function in this manner allows the
scheduling routine to set up the TIME 3 counter and the address of the routine to be
initiated at a specific time. Then it need not be concerned with the timing of the
initiation of the routine. The scheduling job can continue to be processed o r be put to
sleep, thereby conserving time.

1 . 7 . 3 SCHEDULING OF TIME DEPENDENT FUNCTIONS. A job scheduled through the
Executive core set list or a program interrupt routine can schedule a time dependent
routine. The scheduling process is performed by a routine of the computer program
called the WAITLIST. This routine maintains a scheduling list of time dependent
routines, referred to as TASKS, to be done. For each of the nine possible entries at any
one time of this waiting list, the WAITLIST routine requires two quantities, the time
till the function should occur in increments of 10 m. s . and the starting address of the
routine or TASK that is to be initiated at the specified time. The scheduling routine
must provide the Waitlist routine with these two quantities.

1 .7 .4 EXECUTION O F TIME DEPENDENT FUNCTIONS. The control over the
execution of a task is provided by the T3RUPT routine whenever the TIME 3 counter
overflows. The T3RUPT routine uses the stored starting address to route control of the
computer to process the task. After the task has been completed, it returns control to
the T3RUPT routine which in turn, returns control to the job which was interrupted.

In summary, a job or task can schedule a task to be done by providing the Waitlist
routine with the time till the task is to be performed and the starting address of the task.
Then, through counter interrupt processing, the TIME 3 counter, which was set to over-
flow minus the time till the desired function is to be executed, is incremented until an
overflow condition exists in the counter. Whenever overflow exists in the TIME 3
counter, the desired amount of time has elapsed and the TBRUPT routine is initiated
which uses the starting address of the task to transfer the control of computer process-
ing to the task. After the task has been completed, control is returned to the T3RUPT
routine which returns control of computer processing to the job that was being processed
when the TIME 3 counter overflowed. By implementing the execution of tasks in this
manner, the computer's jobs do not have to concern themselves with the task it has
scheduled. This saves considerable computer time.

1- 12

1 . 8 LGC INPUT AND OUTPUT CHANNEL INTERFACE

In addition to the counter interrupt and the program interrupts previously dt-!scrjGt.!d, tht:
LGC has a number of other inputs derived from its interfacing hardware. These itlpu.t.s arc!
a result of the functioning of the hardware o r an action by the operator oi the spacecraft.
The counter interrupts in most cases enable the LGC to process inputs representative of
data parameters such as changes in velocity. The program interrupt inputs tcj ine IdC;C arc
used to initiate processing of functions which must be processed a relatively short tlrne
after B particular function is present. The other inputs to the LGC, in general, LXI:LG~C thc
LGC to be cognizant of "conditions" which exist in its environment. These inputs a r c routed
to, and are available to the LGC's programs through the LGC's input registers.

The outputs of the LGC fall in one of the following categories: (1) data., (2) corltrol, (3)
condition indications. Some of these outputs are controllable through thc LGC's program
while others are present as a function of the LGC circuitry. All of the outputs which a r e
controlled by the LGC's programs are developed through the LGC's output ref,ist.crs. The
bit breakdown per channel is shown in table 1-1.

1 . 8 . 1 CHANNEL 01. This channel is used a s the L register of the centrd procr?ssor.

1 . 8 . 2 CHANNEL 02. This channel is used as the Q register of the central prc)c:c?ssor.

1. 8 . 3 CHANNEL 03 HIGH-ORDER SCALER. This channel furnishes a 1 4 - I J i l p js i t ivc3
number whose least significant bit has a weight of 5. 12 seconds. The rn&~inlum cont,utlt
of the register is 23.3 hours.

1. 8.4 CHANNEL 04 UIW-ORDER SCALER. This channel furnishes a l-!.--bit. positive
number whose least significant bit has as a weight of 1/3200 second. 'The m:u;irnunl
content of the register is 5.12 seconds.

1 .8 .5 OUTPUT CHANNEL 05. This channel has eight bit positions and is assnciattd
with the reaction control system jets. The channel outputs a r e used for translational
and rotational motion of the LM. The RCS jet commands from the cha.nnel a r e fed to
the preamplifiers of the jet drivers in the CES. The driver ampli.fit?c o u t p u t s are then
fed to the RC subsystem to provide the required control.

The first number contained in the bit positions indicates which of t h e It; thrusters is
controlled by that bit. Four clusters is used. The letter indicates the direction of
thrust such as U for up and D for down.

I.. 8 . 6 OUTPUT CHANNEL 0 6 . This channel has eight bit positions a.nd 1s :hci
associated with the reaction control system jets. A logic one in any of thc bit fxmtions
will cause the appropriate reaction control jet to be fired.

1.8.7 OUTPUT CHANNEL 07. This channel is the F EXT register. It is associated
with the selection of word locations in fixed memory as shown in figure 1-7. This
channel has three bit positions.

1.8.8 OUTPUT CHANNEL 10. The information contained in this channel is routed the
DSKY's. The different configurations light various displays on the DSKY's. In Section
N, it will be seen that there is a basic difference between the information In bit
positions 1 through 11 and the information in bits 12 through 15.

1- 13

1 .8 .9 OUTPUT CHANNEL 11. The information contained in this channel is also routed
to the DSKY. The function of the information in the various bit positions is detailed in
Section 1-9-3.

1 .8 .10 OUTPUT CHANNEL 12. This channel consists of 15 bit positions, 14 of which
a r e presently used. The outputs a re dc signals sent to the spacecraft systems and the
PGNCS. Bits 13 and 14 are sent through the DSKY's but light no indicator.

1 .8 .11 OUTPUT CHANNEL 13. The first four bite of this channel a re associated with
the landing and rendezvous radar. The content of bits positions 1 through 3 defines which
data is to be supplied by the radar and can select one of the six inputs as shown in figure
1-8.

When a one has been entered into bit position 4 together with the necessary selection
bits in bit positions 1 through 3, the LGC starts to transmit one of the six control
signals. While the control signal is being transmitted, a sync pulse is also transmitted.
When the radar receives the sync pulses, it sends data pllses to the LGC.

FE7

0

1

1

1

a

0

0

0

0

1

1

1

1

FE6

X

0

0

1

1

FE5 I HIGH BANKS

X

EMPTY 1

EMPTY 0

EMPTY 1

40-43 0

30-37

Figure 1-7. Channel 07 Fix Extension Bits

b

0

0

0

1

0

0

1

1

C

0

1

0

1

0

1

0

1

Function

-
RR Range

RR range rate

-
LR X Velocity

LR Y Velocity

LR Z Velocity

LR Range

Figure 1-8. Radar Selection

1- 14

0 Bit positions 12 through 14 have been covered under program interrupt priority control.

1.8.12 OUTPUT CHANNEL 14. The altitude meter control is controlled by bit
positions 2 and 3 of output channel 14.

Bit positions 11 through 15 are associated with the CDU drive control. The CDU drive
control enters the following dc signals into the counter priority control to request the
execution of a DINC instruction: X IMU CDU, Y IMU CDU, Z IMU CDU, S RR CDU and
T RR CDU.

Signal X IMU CDU is generated when bit position 15 contains a logic one, signal Y IMU
CDU is generated when bit position 14 contains a logic one, signal Z IMU CDU when bit
position 13 contains a logic one, signal T RR CDU when bit position 12 contains a logic
one, and signal S RR CDU when bit position 11 contains a logic one. More than one of
these signals can be generated simultaneously.

The gyro drive control selects a gyro to be torqued positively o r negatively as shown
in figure 1-9 and then applies a 3200 cps to the appropriate gyro to aocomplish this
function. The appropriate signal is determined by the bit configuration of bits 7 through
9 of output channel 14. If bit positions 6 and 10 a r e a logic one, a 3200 cps pulse train
is routed to the gyro electronics specified by bit positions 7 through 9, and a dc signal
is entered into the counter priority control which commands the sequence generator to
perform a DINC instruction.

a

0 0
I b Gyro

-

Figure 1-9. Gyro Selection

1.8.13 INPUT CHANNEL 15. This channel consists of five bit positions. Whenever a
key on the DSKY is pressed, a unique five bit code is entered into this channel. The
RUPT 5 interrupt routine is also developed whenever a key is depressed.

1.8 .14 INPUT CHANNEL 16. This channel consists of seven bit positions. If the
MARK pushbutton has been depressed, a logic one is entered into bit position 3 or 4.
This would cause a KEYRUPT 2 (RUPT 6) interrupt routine. If the MARK REJECT
pushbutton has been depressed, a logic one is entered into bit position 5 of this
channel. This will also cause a KEYRUPT 2 interrupt routine to be performed.
Bits 6 and 7 receive discretes from the crew station commanding an increase o r
decrease in the rate of descent.

1.8.15 INPUT CHANNELS 17 THROUGH 27. Spares.

1- 15

1.8.16 INPUT CHANNEL 30. This channel consists of 15 bit positions and uses
inverted logic. These positions a r e utilized as follows:

a. Bit Position 1 (ABORT) This Signal informs the LGC that an abort using the
descent engine has been commanded and is initiated by the crew from the control panel.

b, Bit Position 2 (STAGE VERIFY) This signal informs the LGC that staging has
occurred and originates with the explosive devices.

c. Bit Position 3 (ENGINE ARMED) This signal informs the LGC that the crew has
armed either the ascent o r descent engine and is initiated from the control panel.

d. Bit Position 4 (ABORT STAGE) This signal informs the LGC that an abort which
requires use of ascent engine has been commanded.

e. Bit Positions 5 (AUTO THROTTLE) Informs LGC that it is in command of descent
engine throttle.

f. Bit Position 6 (DISPLAY INERTIAL DATA) This signal informs the LGC to supply
forward and lateral velocity to the display panel.

g. Bit Position 7 (RR CDU FAIL) This input is generated when a failure has
occurred in one of the radar CDU channels.

h. Bit Position 9 (IMU OPERATE) A binary one in this bit position indicates that the
IMU is turned on and is operating with no malfunctions.

i. Bit Position 10 (G&N CONTROL O F S/C) This signal informs LGC that PGNCS
(as opposed to abort guidance) is in control of the LM.

j . Bit Position 11 (IMU CAGE) This input indicates that the IMU cage condition exists
in the ISS.

k. Bit Position 12 (IMU CDU FAIL) This input indicates that a failure has occurred in
one of the inertial CDU channels.

1. Bit Position 13 (IMU FAIL) This input indicates that a malfunction has occurred
in the IMU stab loops.

m. Bit Position 14 (ISS TURN-ON REQUEST) This input indicates when the ISS has
been turned on o r commanded to be turned on.

n. Bit Position 15 (TEMP IN LIMITS) This input indicates when the stable member
temperature has not exceeded its design limits.

1 .8 .17 INPUT CHANNEL 31. This channel consists of 15 bit positions and uses
inverted logic.

1-16

a. Bit Positions 1 and 2 (*PMI) These signals indicate *pitch manual input commands
from the attitude controller. Bit positions a re utilized for landing point designator
elevation changes.

b. Bit Positions 3 and 4 (*YMI) These signals indicate &yaw manual input commands
from the attitude controller.

c. Bit Positions 5 and 6 (&MI) These signals indicate roll manual input commands
from the attitude controller. These bit poeitions are utilized for landing point deeignator
azimuth changes.

d. Bit Positions 7 through 12 (i X , Y, Z TRANS) These signals from the translation
controller command LM translation by ON/OFF firing of the RCS jets under LGC
control.

e. Bit Position 13 (ATTITUDE HOLD) This signal indicates the SCS is operating in the
attitude hold mode.

f. Bit Position 14 (AUTO STABILIZATION) This signal informs the LGC that the
SCS is operating in the automatic mode.

g. Bit Position 15 (ATTITUDE CONTROLLER OUT O F DETENT) This signal informs
the LGC that the attitude controller i s not in the neutral position.

1.8 .18 INPUT CHANNEL 32. This channel consists of 15 bit positions and uses
inverted logic.

a. Bit Positions 1 through8 (THRUSTER FAIL) These eight signals inform the LGC
of thruster pair shutoff so that the LGC immediately ceases to command these jets on
and compensates for their loss.

b. Bit Positions 9 and 10 (PITCH OR ROLL GIMBAL OFF) This signal informs the LGC
that the descent engine pitch or roll gimbal drive amplifier has been shut off by automatic
failure detection circuitry.

a. Bit Position 2 (RR POWER ON/AUTO) This signal indicates that the RR power is
on and the mode switch is in the automatic (computer) position.

b. Bit Position 3 (RR RANGE LOW SCALE) This signal is implemented automatically
by the rendezvous radar at a range of approximately 50 nautical miles and indicates
that the RR scale factor is on low scale.

c. Bit Positions 4 and 5 (RR AND LR DATA GOOD) These signals indicate that the
RR and LR range trackers have locked on.

d. Bit Positions 6 and 7 (LR POSITIONS 1 AND 2) These signals indicate the position
of the landing radar antenna.

1- 17

e. Bit Position 8 (LANDING VEL DATA GOOD) This signal indicates that the LR
velocity trackers have locked on.

f. Bit Position 9 (LR RANGE LOW SCALE) This signal is implemented automatically
by the landing radar at approximately 2500 feet range and supplied to the LG€ to
indicate a change in scale factor.

g. Bit Position 10 (BLOCK UPLINK SWITCH) This signal is generated by a switch
closure to inhibit reception of data via uplink. (Uplink capability not presently on LM).

h. Bit Positions 11 and 12 (UPLINK AND DOWNLINK TOO FAST) These signals a r e
generated by the telemetry system indicating PGNCS telemetry rate is too high.

i. Bit Position 13 (PIPA FAIL) This signal by the computer when an accelerometer
loop failure occurs.

j . Bit Position 14 (COMPUTER WARNING) This signal is generated by the computer
if one of the following items occur:

1) Restart

2) Counter fail

3) Voltage fail in standby mode

4) Alarm test

5) Scaler double alarm

k. Bit Position 15 (OSC ALARM) This signal occurs if the computer oscillator stops.

1 .8 .20 OUTPUT CHANNELS 34 AND 35. These channels provide 16 bit words
including a parity bit for downlink telemetry transmission.

1 . 9 COMPUTER/DSKY - HARDWARE/ASTRONAUT RELATIONSHIP

The DSKY serves an important interface function in the PGNCS. Through the DSKY the
computer controls the mode of operation of the,ISS and radar, keeps the astronaut cognizant
of the operational condition of certain portions of the PGNCS equipment, displays pertinent
information to the astronaut and makes requests of the astronaut to perform various actions.
The astronaut, in turn, is capable of loading data into the computer, requesting the display
of data, commmding'system modes of operation and commanding other miscellaneous
functions to be performed by the computer.

1 . 9 . 1 KEYBOARD. The keyboard consists of ten numerical keys (pushbuttons)
labeled 0 through 9, two sign keys (+ o r -) and seven instruction keys: VERB,
NOUN, CLR (clear), STBY (standby), KEY REL (key release), ENTR (enter) and
RSET (reset), Table 1-2 lists these keys (pushbuttons) and their functions.

1- 18

Table 1-2. DSKY Pushbuttons

Pushbutton Function

0 through 9 pushbuttons Enter numerical data, noun codes and verb codes
into the computer.

+ and - pushbuttons Inform the computer that the following numerical data
is decimal and indicate the sign of the data.

~ ~~ ~

NOUN pushbutton

CLEAR pushbutton

STBY pushbutton

Conditions the computer to interpret the next two
numerical characters as a noun code and causes the
noun display to be blanked.

Clears data contained in the data displays. Depres-
sing this key clears the data display currently being
used. Successive depressions clear the other two
data displays.

Commands the computer to the standby mode when
depressed the first time. An additional depression
commands the computer to resume regular operation.

KEY REL pushbutton
- ~ - ~ ~

ENTR pushbutton

~~

Releases the DSKY displays initiated by keyboard
action so that information supplied by the computer
program may be displayed.

Informs the computer that the assembled data is com-
plete and that the requested function is to be executed

RSET pushbutton Extinguishes the lamps that a r e controlled by the
computer.

VERB pushbutton Conditions the computer to interpret the next two
numerical characters as a verb code and causes the
verb display to be blanked.

Whenever a key is depressed, a unique five bit code associated with that key is generated,
There is, however, no five bit code associated with the STBY key. If a key on the DSKY
is pressed, the five bit code associated with that key is entered into bit positions 1
through 5 of input channel 15 of the computer. Note that this input will cause a request
for the KEYRUPT 1 program interrupt.

The switches for the keys are wired in series to insure that only one input at a time is
presented to the diode encoder and, consequently, only one code at a time to the input
channel. Trap reset signals a re associated with the DSKY. When a key is released on
the computer DSKY, signal TRAP 15 RESET is sent to trap circuitry in the computer
associated with the KEYRUPT 1 program priority interrupt.

1-19

1 . 9 . 2 DISPLAY INDICATORS. There are 24 display indicators on the DSKY: 21 digit
display indicators and three sign display indicators. The digit display indicators a re as
follows:

a. M1 and M2 which comprise the program display

b. V1 and V2 which comprise the verb display '

c. N1 and N2 which comprise the noun display

d. R l D l through R1D5 which comprise the numerical portion of data display R1

e. R2D1 through R2D5 which comprise the numerical portion of data display R2

f. R3D1 through R3D5 which comprise the numerical portion of data display R3

The sign display indicators a re as follows:

a. R1S which is the sign portion of data display R1

b. R2S which is the sign portion of data display R2

c. R3S which is the sign portion of data display R3

Figures 1-10 and 1-10A show the displays and their locations.

Table 1-3 Lists the disptay indicators and their functions.

The relays shown in figures 1-11 and 1-11A are used in conjunction with the display indications
and some condition indicators. These relays a re controlled Output Channel 10.

Table 1-3. Display Indicators and Functions

Display Indicator

PROGRAM indicators

VERB indicators

NOUN indicators

DATA DISPLAY indicators

Function
~~ ~ -~

Indicate program being processed by the computer.

Indicate verb code entered at keyboard o r com-
manded by the computer.

Indicate noun code entered at keyboard o r com-
manded by the computer.

Indicate numerical data entered at keyboard o r
commanded by the computer and sign associated
with this numerical data if it is in decimal.

1-20

VERB

PROGRAM

(“ 2 1

-1 NOUN

* DATA DISPLAY R1* ~ 1 ~ 4 ~ 1 ~ 5

* DATA DISPLAY R2* I R2S I R2D1 I R2D2 I R2D3 I R2D4 I R2D5 1
* DATA DISPLAY R3* I R3S I R3D1 I IUD2 I R3D3 I R3D4 I R3D5 1

* NOT INCLUDED ON FACE OF DSKY*

Figure 1-10. Display Indicators

1-21

F I L L E R

J 9 CON

e

40699A

Figure 1-10A. Display and Keyboard

1-21A

1 . 9 . 3 DSKY CONDITION INDICATORS. There are fourteen condition indicators dis-
played on the DSKY. Table 1-4 lists the indicators and their functions.

The UPLINK ACTY indicator will not be used on the LM DSKY.

The TEMP indicator will light if bit position 15 of input channel 30 contains a logic 0.
This indicator can be lit during the atandby mode,

The GIMBAL LOCK indicator will light i f bit position 6 of output channel 10 contains a
logic 1 and bit position 15 through 12 of the same channel a re 1, 1, 0 , 0 respectively.

The PROG indicator will light if bit position 9 of output channel 10 contains a logic 1 and
bit position 15 through 12 of the same channel a re 1, 1, 0 , 0 respectively.

The NO ATT indicator will light if bit position 4 of output channel 10 contains a logic 1
and bit positions 15 through 12 of the same channel a re 1, 1, 0, 0 respectively.

The TRACKER indicator will light if bit position 8 of output channel 10 contains a logic
1 and bit positions 15 through 12 of the same channel a re 1, 1, 0, 0 respectively.

The STANDBY indicator will light i f the STANDBY circuit is enabled. The indicator
will also light if a light test is performed.

The KEY REL indicator will light i f bit position 5 of output channel 11 is a logic 1. This
indicator is modulated by the flash signal.

The OPR ERR indicator will light if bit position 7 of output channel 11 is a logic 1. This
indicator is also modulated by the flash signal.

The COMP ACTY indicator will light i f bit position 2 of output channel 11 is a logic 1.

1.9 .4 DSKY OPERATION. The operator of the DSKY can communicate with the
computer by the depression of a sequence of keys on the DSKY keyboard. Each
depression of a key inserts a five bit code into the computer. The computer responds
by returning a code to the DSKY which controls the display on a particular display panel
or initiating an operation by the computer. The computer is also capable of initiating a
display of information o r a request for some action to the operator through the processing
of its program.

1 .9 .4 .1 Verb-Noun. The basic communication language used in the interchange
of information is a pair of words known as the VERB and NOUN. Each of these
words is represented by a two-digit octal code. The VERB code specifies that an
action is to be performed. The NOUN code specifies on what the action is to be
performed. An example of a VERB-NOUN code combination is given below.

VERB 16 -- MONITOR IN DECIMAL ALL COMPONENTS O F --
NOUN 21 -- PIPAS

1-22

12 BANKS OF I I BISTABLE RELAYS

RELAY
DRIVER

DIODE DECODER

DRIVER CIRCUITS

" - "" ""

. - a - -
15 14 13 E 12

1

I I ~ l O ~ 9 ~ 8 ' i i 7 ~ 6 ~ 5 ~ 4 ~ 3 ~ 2 ~ ' 1 ~ '
IS . . 1

b 4 1 b 4

BIT 15 BIT 14 BIT 13 BIT 12 BIT l l BIT IO BIT 9 BIT 8 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT I

n
4 BIT RELAY WORD I I RELAY BITS FROM OUTPUT CHANNEL IO
CODE FROM OUTPUT
CHANNEL IO

Figure 1-11. DSKY Display Relay Circuitry

R e e u h a Action I Contents of Channel 10

Program
15 14 13 1 2 \ 1 1 10 9 8 7 6 5 4 3 2 1

l2 12 I I I 1 1 0 0 0 0 0 1 0 0 0 0 0 u 0

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

12

12

12

12

12

12

Gimbal Lock
Spare
NO bAtt
Spare
Spare
Spare

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

11 1 0 0 u 0 0 0 0 0 0 x x x x x Reg 1 Po8 5
10

0 1 1 1 0 x x x x x 0 0 0 0 0 Reg 1 Poa 4 10

0 1 1 1 1 0 0 0 0 0 u 0 0 0 0 Reg 1 (+ I

10

9
9

8

8

I

7

6

6

6

5
5
5
4

4
4
3
3

2

2

2

1
1

1

Reg 1 Po8 3

Prog. Po8 1
Prog. Po8 2
Verb Po8 2

Verb Pos 1

Noun Pos 2
Noun Pos 1

Ret3 1 (-1
Reg 1 Pos 2

Reg 1 Po8 1

Reg 2 (+)
Reg 2 Po8 5
Reg 2 Fos 4

Reg 2 (-1
Reg 2 Pos 3
Reg 2 Pos 2

Reg 2 Po8 1
Reg 3 Po8 5

Reg 3 (+I
Reg 3 Po8 4
Reg 3 Pos 3

Reg 3 (4
Reg 3 Par 2
Reg 3 Pos 1

Figure 1-1

0 1 1 1 0 0 0 0 0 0 x x x x x

1 0 1 1 0 x x x x x 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 x x x x x

1 0 1 0 0 x x x x x 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 x x x x x

1 O O 1 o x x x x x O ~ J O O O
1 0 0 1 0 0 0 0 0 0 x x x x x

0 ’ 1 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 x x x x x 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 x x x x x

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 x x x x x 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 x x x x x

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 x x x x x 0 0 0 0 0

0 1 0 0 0 0 ~ 0 0 0 x x x x x

0 0 1 1 0 x x x x x 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 x x x x x

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 x x x x x 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 x x x x x

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

o o o l o x x x x x o o o o o
0 0 0 1 0 0 0 0 0 0 x x x x x

A. DSKY Display Indications
1-22B

Indication

TEMP

GIMBAL LOCK

PROG

RESTART

TRACKER

OPR ERR

KEY REL

STBY

COMP ACTY

Table 1-4. DSKY Condition Indicators

Function

Indicates that Information is being received via uplink.

Indicates that the stable member temperature has exceeded its
design limits by -+50F.

Indicates that the middle gimbal has driven through an angle
greater than 70° from its zero position.

Indicates that a program check has failed.
This indicator is controlled by a computer program.

Indicates :

1. That a word has been incorrectly transferred from memory -
Parity fail

2. That the computer is in an endless control loop - TC Trap

3. That the computer has been interrupted for 30 milliseconds -
RUPT lock.

4. That the computer has not accomplished a C S S new job within
1 .28 sec. (Night watchman)

5. That a test alarm has been generated by program control.

Indicates rendezvous radar CDU failure o r improper data from
rendezvous radar.

Indicates that the Keyboard and Display program has encountered
some improper operating conditions.

Indicates that the internal program has attempted to use the
Keyboard and Display System and found it busy.

Indicates that the computer is in the standby condition.

Indicates to the astronaut that the ISS is not suitable for use as an
attitude reference.

Indicates that the computer is in a program other than dummy job
and that the computer is not in standby mode.

1-23

This combination of VERB-NOUN codes causes the accumulation of PIPA counts
(as accumulated by the computer) from each of the PIPA'S to be displayed in R1
(X PIPA), R2 (Y PIPA), and R3 (Z PIPA).

The standard procedure of inserting the VERB-NOUN codes via the keyboard is the
depression of seven keys in a sequence. Using the VERB-NOUN codes previously
discussed, the sequence of key depressions would be as follows:

a. VERB

b. 1

c. 6

d. NOUN

e. 2

f. 1

g . ENTER

The ENTER key depression indicates to the computer that it should perform the
operation indicated by the VERB-NOUN codes.

An alternate sequence of key depressions which would accomplish the same
insertion of information would be as shown beiow:

a. NOUN .

b. 2

c. 1

d. VERB

e. 1

f. 6

g. ENTER

Whenever the VERB key is depressed, the two VERB display panels a re blanked.
Then as the digits of the VERB code a r e keyed in, the digits are displayed in the two
VERB display panels. For example:

VERB KEY DEPRESSED -- VERB DISPLAY PANELS V1 AND V2 BLANKED

1 KEY DEPRESSED -- 1 DISPLAYED IN V I

6 KEY DEPRESSED -- 6 DISPLAYED IN V2

1- 24

Whenever the NOUN key is depressed, the two NOUN display panels, N 1 and N2, a r e
blanked. As the two digits of the NOUN code a r e keyed in, the NOUN display panels
display the digits of the NOUN code.

If the VERB-NOUN codes displayed in the VERB-NOUN display panels are those
desired for the next entry of information, the VERB-NOUN codes need not be keyed
in again. All that is required is the depression of the ENTER key. This indicates to
the computer to use these codes again.

Prior to depressing the ENTER key, aRer entering the proper VERB-NOUN codes,
the VERB-NOUN codes should be verified. If they are not the desired codes, the
wrong action would be initiated which might cause damage to the system.

1.9.4.2 Data Loading. Some VERB-NOUN codes require more information to be
keyed in other than the VERB-NOUN codes. If more data is required, after the
depression of the ENTER key following the keying in of the VERB-NOUN codes,
the VERB-NOUN display panels will flash on and off at a 1 . 5 cps rate. These dis-
play panels will continue to flash until all of the information associated with the
VERB NOUN code has been keyed in. For example, using VERB 21 (WRITE 1ST
COMPONENT INTO) NOUN 16 (TIME IN SECONDS), the entry sequence would be
as follows:

a. VERB

b. 2

c. 1

d. NOUN

e. 1

f. 6

g. ENTER

After the ENTER key is depressed, the VERB-NOUN display panels will flash 21 and
16, respectively. This indicates that more information is required. In this case, it
is a time in seconds. Assuming that the time to be entered is +75.25 seconds, the
entry procedure would be as follows:

a. +

b. 0

c. 7

d. 5

1- 25

e. 2

f. 5

g. ENTER

After the ENTER key is depressed, the VERB-NOUN display panels will stop flashing
and remain on displaying VERB 21, NOUN 16. As the various keys a re depressed
while inserting the data, the digits are displayed in positions of one of the display
registers corresponding to the order in which they were entered. For instance,
when +75.25 seconds is being entered, the + key is depressed first and + is displayed
in the FUS position. The 0 key i s depressed and 0 i s displayed in RlD1. The 7 key
is depressed and 7 is displayed in RlD2. This continues until the information is com-
pletely keyed in. The ENTER key depression after keying the desired information not
only stops the flashing of the VERB-NOUN display but indicates to the computer that
it should proceed and perform the operation specified.

VERB 21 (WRITE 1ST COMPONENT INTO) 22 (WRITE 2ND COMPONENT INTO)
23 (WRITE 3RD COMPONENT INTO) 24 (WRITE 1ST AND 2ND COMPONENTS
INTO) and 25 (WRITE lST, 2ND AND 3RD COMPONENTS INTO) are used to enter
one, two o r three components o r portions of data into the computer. If VERB 25
(WRITE lST, 2ND AND 3RD COMPONENTS INTO) i s entered, the VERB display
will illuminate and display 25. When the ENTER key is depressed after keying
in the VERB-NOUN code, the VERB will display 21 (WRITE 1ST COMPONENT INTO)
flashing. After the first portion of data has been keyed in, displayed in R l and the
ENTER key depressed, the VERB display will illuminate 22 (WRITE 2ND COM-
PONENT INTO) flashing. After the second component o r portion of the data is
keyed in, displayed in R2 and the ENTER key depressed, the VERB display
illuminates 23 (WRITE 3RD COMPONENT INTO) flashing. The third component of
data is then entered, displayed in R3, and the ENTER key is depressed. The VERB
display stops flashing and the computer proceeds to utilize the information entered.

1.9.4.3 Correcting Erroneous Data. Any time prior to depressing the last ENTER
in the loading sequence, i . e. , the ENTER after the third component was inserted in
the previous paragraph, erroneous information can be corrected. To correct
erroneous data, the CLEAR key is used. This key causes the display register, R1,
R2, and R3, last loaded to be cleared and also clears the corresponding information
loaded into the computer. For example, if a three component load is being keyed in
and i t i s discovered that an e r ro r exists in the first component of data in R I , after
R3 has been loaded but prior to the last ENTER, the following must be done to
correct the data:

DEPRESS CLEAR KEY -- R3 BLANKED -- VERB 23 DISPLAYED

DEPRESS CLEAR KEY -- R2 BLANKED -- VERB 22 DISPLAYED

DEPRESS CLEAR KEY -- R1 BLANKED -- VERB 23 DISPLAYED

RELOAD R1, R2 and R3

The CLEAR key is not used to clear the VERB, NOUN o r PROGRAM displays.

1- 26

1 .9 .4 .4 Decimal and Octal Display and Loading. Decimal and octal displays or
loadings a r e distinguished by use of the + and - displays o r key inputs. Whenever
decimal data is to be loaded, the + or - key must be depressed prior to keying in the
digits of the data to be Loaded. If the sign keys are not used, the data is assumed to
be in octal form by the computer. Whenever data i s displayed using a sign, + or - ,
the displayed data is in decimal. Otherwise, when the sign is not used and RlS, R2S
or R3S are blanked, the data displayed is in octal.

1 . 9 . 4 . 5 Monitor vs. Display. Whenever a display type VERB is used, the requested
data is transferred to the DSKY panels once each time the data is requested.

Monitoring type VERBS, in contrast, a re periodically updated and the display of the
requested data changes as the requested data in the computer changes. The updating
of the displayed data for a monitor type VERB is accomplished approximately every
1 second.

1 .9 .4 .6 Changing of Major Mode. The major mode refers to system operations in
the various phases of a flight o r while operating on the ground. Examples of major
modes are:

PRELAUNCH ALIGNMENT

GUIDANCE REFERENCE RELEASE AND BOOST

ETC.

In order to request that the system initiate one o r more major modes of operation, a
different sequence of entering information through the DSKY is required. The pro-
cedure would be as follows using VERB 37 (CHANGE MAJOR MODE TO).

a. VERB

b. 3

c. 7

d. ENTER

1- 27

When the ENTER key is depressed, after keying in VERB 37, the VERB display
panels flash and the NOUN display panels are blanked. Now the two-digit octal code
for the desired major mode can be entered through the keyboard. As the appropriate
keys are depressed, the digits of the code a r e displayed in the NOUN display panels.
When the ENTER key is depressed after keying in the two code digits, the major mode
code is displayed in the two PROGRAM display panels M 1 and M2. If the operator
wants to initiate the major mode PRELAUNCH ALIGNMENT which use the program
number 01, the following keying sequence must be used:

a. VERB

b. 3

c. 7

d. ENTER

e. 0 Entry for Prelaunch Alignment mode request

f. 4 Entry indicating phase to enter Prelaunch Alignment

g. ENTER

The two program display panels would now display 0 1 and the NOUN panels would be
blanked.

1.9.4.7 Mode initiation. Another group of VERBS enable the operation to initiate
system mode6 of operation. Examples of these are:

COARSE ALIGN -- VERB 41

FINE ALIGN IMU -- VERB 42

ZERO -- VERB 40

Some of these VERBS do not require an associated NOUN code. For example,
if the change major mode is to be initiated, the procedure would be:

a. VERB

b. 3

I c. 7

~

d. ENTER

1- 28

This would cause the system to change major mode. Other VERBS do require NOUN
codes such as VERB 40 (ZERO). This VERB refers to CDU's and the NOUN code
required with this VERB code specifies either the inertial o r radar CDU's (NOUN 20,
inertial CDU; NOUN 40, rendezvous radar angles). If it i s desired to ZERO the
inertial CDU' s , the keying procedure would be:

a. VERB

b. 4

c. 0

d. NOUN

e. 2

f. 0

g. ENTER

1 . 9 . 4 . 8 Computer Control of the DSKY. Display and monitoring of various data
can be accomplished by the computer through i ts own initiative without requests for
the data by the operator. The appropriate VERB-NOUN codes are displayed with
the data so that it can be properly identified and used by the operator. Whenever the
computer has initiated the display o r monitoring of some data, the data will be dis-
played for at least 10 seconds. After th i s time duration, the computer is free to
change the data displayed if it so desires.

The computer is also capable of requesting the operator to perform an action. The
action that is requested is usually specified by a combination of VERB-NOUN codes
and additional information displayed in one o r more of the display registers, R1, R2
and R3. For example, if VERB 50 (PLEASE PERFORM) NOUN 25 (CHECKLIST) is
displayed in the VERB-NOUN display panels, R1 will display a numerically coded
checklist item. When the operator has performed the requested action, the ENTER
key should be depressed. This indicates to the computer that the operation has been
completed. If the operator does not wish to perform the action requested, he may
use VERB 33 (PROCEED WITHOUT DATA) o r VERB 34 (TERMINATE). These VERB
codes indicate to the computer to continue on without the data o r requested action as
best it can o r to terminate the function it is performing.

1.9 .4 .9 DSKY/Computer/Operator Interlocks. While the operator of the DSKY is
using: the DSKY to load, display, etc. , the computer cannot interrupt this process.
An Gterlock is set up by the computer inhibiting itself from using the DSKY.
Therefore, the DSKY operator should remove this interlock when he is finished using
it. This is accomplished by depressing the KEY RELEASE key, This action
removes the DSKY-OPERATOR interlock and enables the computer to use the DSKY.

- "

The computer is capable of requesting that the DSKY operator release the DSKY so
the computer may use it. Illuminating the KEYRLSE panel on the DSKY FAILURE
INDICATOR PANEL indicates that the computer has some data to display to the
operator. The operator is not obligated to release control of the DSKY if he wishes
to continue to use it.

1-29

As previously mentioned, when the computer has initiated a display of data, the data
will be displayed for at least 10 seconds before the computer is able to display
different data. This is because of an interlock the computer imposes on itself to
enable the operatdr time enough to read the data displayed. After 10 seconds have
elapsed, the computer drops the interlock and is free to display different data to the
operator.

1.9.5 VERB-NOUN LIST. Contained in this section of the study guide is a complete
listing of the VERB and NOUN codes which a re used with the Sunburst Rev. 14 computer pro-
gram. A brief description is also given for each of the VERB and NOUN codes along with
the scaling of the data converted and displayed on the DSKY as a result of NOUN code
usage. Keep in mind that many combinations of these codes exist; however, some of the
combinations are non-sensical o r illegal. Some VERB codes do not require a NOUN
code to completely specify the desired action.

1.9.5.1 Verb Codes. The VERB codes a r e divided into two groups - Ordinary an
Extended. The ordinary verbs generally a r e involved in the manipulation (loading
display, etc.) of data. The extended verbs, in general, a re used for initiation of
actions (moding requests, equipment operation, etc.).

ORDINARY VERBS

Verb
Code

00

01

02

03

04

05

06

07

10

11

12

13

Function

Illegal

Display (in octal) 1st component of:

Display (in octal) 2nd component of:

Display (in octal) 3rd component of:

Display (in octal) 1st and 2nd components of:

Display (in octal) lst, 2nd and 3rd components of:

Display (in decimal) all component's of:

Double Precision decimal display

Spare

Monitor (in octal) 1st component of:

Monitor (in octal) 2nd component of:

Monitor (in octal) 3rd component of:

Display
Location

R1

R1

R1

R1, R2

R1, R2, R3

A s appropriate

R1, R2

R1

R1

R1

1-30

Verb
Code

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

-
Function

Monitor (in octal) 1st and 2nd component of:

Monitor (in octal) lst, 2nd and 3rd component of:

Monitor (in decimal) all component(s) of:

Monitor Double Precision decimal

Spare

Load 1st component into:

Load 2nd component into:

Load 3rd component into:

Load 1st and 2nd components into:

Load lst, 2nd and 3rd components into:

Spare

Fixed Memory Display

Request Executive

Request Waitlist

Bump Displays c(R2) into R3, c(R1) into R2

Proceed without Data

Terminate Current test o r Load Request

Test lights

Fresh Start

Change Major Mode to:

Display
Location

R1, R2

R1, R2, R3

A s appropriate

R1, R2

R1

R2

R3

R1, R2

R1, R2, R3

R1

EXTENDED VERBS

40 Zero (used with NOUN 20, ICDU; NOUN 40, RR angles, NOUN 7 0 ; Optical
Tracker Angles; only)

41 Coarse Align (used with NOUNS 20, 40 and 7 0 only)

42 Fine Align IMU

1-3 1

"

~

Verb
Code

43

44

45

46

47

50

51

52

53

54

55

56

57

60

6 1

62

63

64

65

66

67

70

71

72

-
Function

Load IMU Attitude Error Meters

Illegal Verb

Command LR to Position 2

Sample Radar Once per Second

Perform LM FCS TEST

Please Perform

Please Mark

Please Mark Y

Please Mark X or Y

Pulse Torque GYRO'S

Align Time

Perform Banksum

Perform System Test

Illegal Verb

Illegal Verb

Scan LM Inbits

Initialize AGS

Illegal Verb

Illegal Verb

Illegal Verb

Illegal Verb

Illegal Verb

Illegal Verb

Illegal Verb

Display
Location

1-32

Verb
Code

Function

73 RHC Used For Minimum Impulse

74 RHC Used For Rate Command

*7 5 DAP Wide Deadband

*7 6 DAP Narrow Deadband

77 Illegal Verb

1. 9 . 5 . 2 Verb Descriptions.

ORDINARY VERBS

Verbs 01 - 05 Perform octal displays of data.

Verb 06

Verb 07

Verbs 11 - 17

Verbs 21 - 25

Verb 27

Performs decimal display of data, The scale factors,
types of scale factor routines, and component information
a r e stored within the computer for each Noun which is
required to display in decimal.

Performs a double precision decimal display of data. It
does no scale factoring. It merely performs a 10
character fractional decimal conversion of two consecutive
erasable registers using R1 and R2 (the sign is placed in
the R 1 sign position; the R2 sign position is blank). It
cannot be used with Mixed Nouns. Its intended use is
primarily with "Machine Address to be Specified" Nouns.
If this verb is used with nouns that are inherently not
double precision, the display will be meaningless.

The monitor verbs allow other keyboard activity. It is
ended by terminate, VERB 34, any noun-verb subroutine
that passes the DSKY block o r another monitor. Monitor
action is suspended but not ended, by any keyboard action
except e r r o r reset and begins again when the KEY
RELEASE is initiated.

Perform data load. Octal quantities are unsigned.
Decimal quantities are preceded by a + o r - sign.

Bank Display. This Verb is included to permit displaying
the contents of fixed memory in any bank. Its intended use
is for checking program ropes and the BANK position of
program ropes.

* Not included in Sunburst Rev 14 Listing

1-33

. .

ORDINARY VERBS (Cont'd)

Verb 30

Verb 31

Verb 32

Verb 33

Verb 34

Verb 35

Enters request to Executive Routine for any machine address
with priority. This Verb i s used with the Noun "Machine
Address to be Specifiedtf. This Verb assumes that Noun 26
has been preloaded with

Component 1 Priority (bits 10-14), bit 1 = 0 for
NOVAC and 1 for FINDVAC.

Component 2 Job address (12 bits)

Component 3 Both Bank Constants.

The End of Job subroutine is performed after the request is
entered. The display system is also released.

Enters request to Waitlist Routine for any machine address
with any delay. This Verb is used with the "Machine
Address to be Specified" Noun. This Verb assumes that
Noun 26 has been preloaded with

Component 1 Delay (the desired number of 10
millisecond units of delay in the low bits)

Component 2 Task Address (12 bits)

Component 3 Both Bank Constants

The End of Job subroutine is performed after the request
is entered. The Display system is also released.

Display Shift. Useful for preserving an existing display
of a quantity while displaying another quantity.

Proceed without Data. Informs routine requesting data to
be loaded that the operator chooses not to load fresh data,
but wishes the routine to continue as best it can with old
data. Final decision for what action should be taken is
left to requesting routine.

Terminate. Informs routine requesting data to be loaded
that the operator chooses not to load fresh data, and wishes
the routine to terminate. Final decision for what action
should be taken is left to requesting routine. If Monitor is
one, it is turned off.

The Test Lamps routine checks all of the DSKY lamps.
After 5 seconds, the caution and status lamps are returned
to their original setting.

1-34

ORDINARY VE RBS (cont' d)
,

Verb 36

Verb 37

EXTENDED VERBS

Verb 40

Verb 41

Verb 42-43

Verb 45-46

Verb 47

Verb 50

Verbs 51-53

Verb 54

Verb 55

Verb 56

Initializes the program control software and Keyboard and
Display System Program.

This verb changes the major mode. This is accomplished
by inserting VERB 37 ENTER, MAJOR MODE, ENTER.
The new major mode number is in the noun display until
ENTER is push. At this time the new major mode number
will be in the Program display.

Must be used with Noun 20 (ICDU), Noun 40 (RR Angles)
o r Noun 70 (Optical Tracker Angle) only.

Must be used with Noun 20, Noun 40 o r Noun 70 only.

Call programs that perform the indicated PGNCS
procedure.

Call programs to perform the indicated radar procedure.

Call program to perform the digital autopilot test.

This verb is used only by internal routines that wish the
operator to perform a certain task. It should never be
keyed in by the operator. It is usually used with Noun 25
(Checklist). The coded number for the Checklist Item to
be performed is displayed in register R1 by the requesting
routine.

Once the operator has performed the requested action, he
should press ENTER to indicate that the Checklist Item has
been performed. If he wishes not to perform the requested
action, he should key in the Verb "Proceed Without Data".

Verbs 51, 52 and 53 a r e used only by internal routines that
wish the operator to MARK. They should never be keyed
in by the operator. It is usually used with Noun 30 (Star
Numbers). The numbers of the stars to be marked are
displayed in registers R1, R2, R3 by the requesting routine.
He should never press ENTER with Verbs 51, 52 o r 53. .

Call program that performs the indicated PGNCS
procedure.

Used to update the computer clock.

Check the sum of the fixed memory bank as a cursory check
of the validity of the memory.

1-35

EXTENDED VERBS (cont'd)
Verb 57 Call program that will perform the selected system test,

The test is selected by VERB 57 ENTER, CODE ENTER.
The codes are listed below in table 1-5.

Verb 62 Call program to scan channel 30 through 32.
Verb 63 Call program that performs the indicated PGNCS operation.
Verbs 73 and 7 4 Indicates in what mode of operation the rotation hand controller

is to be used.
*Verbs 75 and 76 Indicates to the computer the deadband being used for attitude

control.

* Not included in Sunburst Rev 14 Listing

1 .9 .5 .3 Noun Codes. The Noun Codes refer to a computer memory register or
registers. These codes a re divided into two groups - Normal Nouns and Mixed Nouns.
The Normal Nouns refer to data stored in sequential memory registers and the data
contained in o r to be loaded into these registerra must use the same scaling. For
example, Noun 21 refers to the PIPA counters which a r e three registers sequentially
located in the computer's memory. All three of the quantities associated with these
registers require the same scaling for display purposes.

Code

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

Nomenclature

Illegal

Gyro Drift Test

Repeat of IMU Test

IMU Alignment Test

M U Check

Gyro Torquing Test

Gyro Compassing

DSKY Check

Semi-Automatic Moding Check

Semi-Automatic Interface Test

AOT Angle Check

RR/Antenna Tracking

High Speed Radar Sampling

Zero All Erasable Memory Banks

Display Inertial Data Test

Table 1-5. System Test Codes (VERB 57)

1-36

The other type of noun code, the Mixed Noun, refers to data which is not necessarily
located in sequential memory registers nor necessarily use the same scaling. For
example, Noun 60 when used with a display verb causes the display of the contents
of the landing radar velocity Z and the computer's real time reference. These two
quantities are not stored in sequential memory registers nor do they require the
same scaling or conversion techniques for their display.

NORMAL NOUNS

Noun Code

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

Function

Not in use.

Specify Machine Address (. X x x X X)

Specify Machine Address (XxXxx.)

Specify Machine Address (XXX. XX Degrees)

Specify Machine Address (XXX. XX Hours)

Specify Machine Address (XXX. XX Seconds)

Specify Machine Address (XX.XXX Gyro Degrees)

Spare

Channel to be specified

Spare

Spare

Spare

Spare

Increment Machine Address (octal only)

Time (XXX.XX seconds)

Time (XXX.XX Hours)

ICDU (XXX.XX Degrees)

PIPA's (xXXXX. Pulses)

New Angles I (XXX. XX Degrees)

Delta Angles I (XXX.XX Degrees)

Delta Time (XXX. XX Seconds)

1-37

NORMAL NOUNS (Cont'd.)

Noun Code Function

25 Checklist (XXXXX.)

26

27

30

31

32

33

34

Prio/Delay, Address, BBCON (Octal Only)

Self Test On/Off Switch (x X X X X .)

Star Numbers (XXXXX.)

Failreg, SFAIL, ERCOUNT [Rl, R2, R3 (octal onlyfl

Midcourse Decision Time [XXX.XX Hours (Internal
Units = Weeks)]

Midcourse Ephemeris Time [?CXX.XX Hours (Internal
Units = Weeks)]

Midcourse Measured Quantity (XXXX. X Kilometers)

35 Inbit Message (Octal Only)

36 Landmark Data 1 (Octal Only)

37 Landmark Data '2 (Octal Only)

40

41

RR Trunnion and Shaft Angles (XXX. XX Degrees)

New RR Trunnion and Shaft Angles (XXX. XX Degrees)

42 AOT Rotation Angles (xruC.XX Degrees)

43

44

45

AOT Detent Code (XXXXX.)

Forward Velocity Lateral Velocity (XXXXX. feet/second)

Rotational Hand Controller Angle Rates (xXXXX.
Degreedsecond)

46 Spare

47 Spare

50 Spare

51 Spare

1-38

NORMAL NOUNS (Cont'd.)

Noun Code Function

52 Gyro Bias Drift (. BBXXXM(millirad/second)

53

54

Gyro Input Axis Acceleration Drift (. BBXXXXX mil l i radsec)
cm/sec2

Gyro Spin Axis Acceleration Drift (. BBXXXXX millirad/sec)
cm/sec2

55 LR Altitude, Time (XXXXX. Feet, XXX. XX sec)

56 LR Vx, Time (X x x x x . Feet/Sec. XXX. XX Seconds)

57 LR Vy, Time (X x x X X . Feet/Sec., XxX.XX Seconds)

60 LR V z , Time (X-. Feet/Sec. , XXX. XX Seconds)

61

62

63

64

Target Azimuth and Elevation (XXX. XX Degrees, XX. XXX
Deg*)

RR Range, Shaft, Trunnion (XXXXXB. Feet, XXX.XX
Degrees, XXX. XX Degrees)
RR Range Rate, Shaft, Trunnion (Xlouoc. Feet, XXX.XX
Deg. , XXX.XX Deg.)

Initial Altitude, Final Altitude, Altitude Rate (XxxXX.
Feet, -. Feet, XxxXx. Feet/Second)

65 Sampled Time (XXX.XX Hours, XXX. XX Seconds)

66 System Test Results (X x x x x . , .xXXXX, XXXXX.)

67 Delta GYRO Angles (XX.xxX Degrees for Each)

70

7 1

Optical Tracker Azimuth and Elevation Angles (xxlx.XX
Degree, XXX. XX Degree)

Desired Optical Tracker Azimuth and Elevation Angles
(XXX. XX Degrees, XXX. XX Degrees)

72 Delta Position (XXXX. X Kilometers for Each)

73 Delta Velocity (XXXX. X MeterdSecond for Each)

74 Midcourse Measurement Data (XXX. XX Hours, XXXX. X
Kilometers, xXXXX.)

1-39

NORMAL NOUNS (Cont'd.)

Noun Code Function

75 Midcourse Measurement Deviations (XXXX. X Kilometers, XXXX. X Meterdsecond, XXXX. X Kilometers)

76 Position Vector (XXXX.X Kilometers for Each)

77 Velocity Vector (xxm, X MeterdSecond for Each)

1.10 INTERRELATIONSHIP OF PROCESSING FUNCTIONS

The interrelationship of processing functions in the computer becomes quite involved
especially when all of the possible combinations of the processing functions are considered.
The processing of counter interrupt inputs enabling the accumulation of incremental data
is performed as required. The processing of program interrupts occurs as required
handling the major portion of the input and output functions for other programs and routines,
and timing the execution of various tasks. The processing of program controlled pro-
cessing functions is carried on with the priority of the processing routine determining when
a particular job is to be processed. The scheduling, terminating, changing, etc. of jobs
and tasks is continuously being performed. Considerable interchange of data between
various jobs and tasks is continuously in process.

At this point in the study guide, an example is given showing the interrelationships of some
of these processing functions. The example used is the complter controlled IMU ZERO
mode switching routine. In this example, it is assumed that the request to perform the
mode switching routine is made through DSKY entries, although it is used by other mission
programs and forms a part of these programs.

In order to request the IMU ZERO mode switching routine to be performed, the astronaut
enters through the DSKY keyboard this sequence of key depressions:

a. VERB

b. 4

c. 0

d. NOUN

e . 2

f . 0

g. ENTER

1-40

This sequence of entries indicates to the computer that is should zero the inertial CDU
channels, VERB 40 ~tates that something should be zeroed while NOUN 20 specifies the
inertial CDU channels.

As each of the keys are depressed for the VERB-NOUN codes, the control of the computer
hardware ie forced to the KEYRUPT routine. (%e figure 1-12.) The KEYRUPT routine
processes the keycode input and u8es the Executive routine to schedule the PINBALL pro-
gram to be processed on a program priority basis. After the scheduling is completed, the
Executive routine returns control to the KEYRUPT routine which returns control back to
the processing function Interrupted by the KEYRUPT.

Within 20 m. 8. of the time the Pinball program was scheduled, the processing of one of the
routines of PINBALL is initiated under Executive control, if PINBALL has the highest
priority of the scheduled jobs. PINBALL processee the input keycodes and furnishes the
T4RUPT routine with the data required for display of the keycode inputs. The T4RUPT
routine drives the DSKY displays with this information. The DOWNRUPT routine pro-
vides the same Information for transmission by the DOWNLINK telemetry system. After
PINBALL has completed the processing of each keycode input, the PINBALL job is
terminated and control is returned to the next lower priority scheduled job under executive
control.

Finally, when the ENTER key is depressed, the KEYRUPT routine is again initiated which
again schedules the PINBALL program through the Executive routine and returns control to
the processing function which was interrupted. Again, within 20 m. s. , PINBALL program
processing is initiated if it is the highest priority scheduled job. With the ENTER keycode
input, the PINBALL routine uses the assembled VERB and NOUN codes to transfer control
via BANKCALL to the IMU ZERO mode switching routine. This routine is executed under
control of the scheduled PINBALL routine which is, in turn, executed under control of the
Executive routines.

The IMU ZERO mode switching routine checks to determine if the IMU is being caged. If
the IMU CAGE signal is present, IMU ZERO is terminated, through Executive action. If
the IMU CAGE signal is not present, the inertial CDU and IMU fail indications are inhibited.
A command i s issued to zero the inertial CDU channele. After the inertial CDU ChaMeh are
commanded to zero, the IMU ZERO2 task is scheduled on the WAITLIST to be executed in
320 milliseconds. After scheduling the IMU ZERO2 a check is made to insure that the IMU
i s operating, The IMU ZERO job is now terminated through Executive action. The 320
millisecond time delay in the execution of this moding operation allows sufficient time for
the inertial CDU channels to zero.

After 320 milliseconds have elapsed from the time that IMU ZERO2 task was scheduled on
the WAITLIST, the T3RUPT routine will result as a function of overflow. The TIME 3
counter and the IMU ZERO2 task will be executed. If the IMU CAGE signal is present,
IMU ZERO2 i s terminated through TSRUPT and the interrupted job will be resumed. If the
IMU CAGE signal is not present, the computer's inertial CDU counters are ret to zero and
the inertial CDU zero command is removed. A four second delay is now scheduled on the
WAITLIST. At the end of this delay, the task IMU ZERO3 is performed. After IMU ZERO3
is scheduled on the WAITLIST, processlng control is returned to the interrupted job through
the TSRUPT routine. This ends the IMUZERO routine.

1-4 1

THLR
'ROCESSING

t I
DSPTABS

TO BLANK
DSKY VERB

DISPLAY

0

' \

AS FIRST
DISPLAY "4"

DISPLAY tlO"
' AS SECOND

DIGIT @
17589-1

17589-2

Figure 1-12. Simplified Processing for Zero N U - CDU Routine (Sheet 2 of 4)

1-43

I

EXEC UTIVE
SCHEDULE
PINBALL

EXECUTIVE INITIATE 188 CDU ZERO
MODE

A BANKCALL

SET UP
ADDRESS OF

IMU ZERO FOR
PROCESSING

IMU ZERO

THE IMU BEING
CAGED? IF SO, END
IMU ZERO t I EXECUTIVE 4 CAGED

INHIBIT INERTIAL CDU
& IMU FAIL INDICATIONS

t-“

17589-3

Figure 1-12. Simplified Processing for Zero IMU - CDU Routine (Sheet 3 of 4)

1-44

320 T
MILLfaEC c

i 4 SEC.

r

c
r
r

n
WAITLIST 4-

4 T3RUPl'

LA IMU ZERO 2

18 THE IMU BEING
CAGED? IF SO, END
IMU ZERO 2

BET COMPUTERtH 188
CDU COUNTERS TO
ZERO I

REMOVE IS8 CDU
ZERO COMMAND

SCHEDULE 4 SECOND
DELAY FI)R I89 CDU
.COUNTERS TO SYN-
CHRONIZE WITH. THE
IMU GIMBALS (SCHED-
ULE " M U ZERO 3"

IMU ZERO 3

T3RUPI' I8 THE IMU BEING
CAGED? IF 90 , END
IMU ZERO 3

REMOVE INERTIAL CDU
& KMU FAIL INHIBITS

JOB

T3RUPT 4 I IS THE USING JOB
NOT
ASLEEP ABLEEP? IF NOT,

TERMINATE TASK
I

L

17589-4

SE C TION 11.

EXECUTIVE CONTROL O F COMPUTER PROCESSING

INTRODUCTION

This section of the study guide presents the Executive Control routines of the computer which
includes the Executive, Waitlist, TSRUPT, Phase Table Maintenance routines. These
routines provide control over the execution of all the processing performed by the computer
with the exception of processing performed by the T4RUPT, KEYRUPT 1 & 2 , UPRUPT,
RADAR RUPT, CONTROLLER RUPT and DOWNRUPT. Also, the processing resulting from
a hardware detected computer malfunction is not controlled by the Executive Control routines.

2 . 1 THE EXECUTIVE ROUTINE

The Executive routine of the computer controls all processing performed by the computer on
the basis of program priorities. It provides for the scheduling of jobs, a means for chang-
ing and terminating jobs, and the capability of deactivating and reactivating jobs. The Ex-
ecutive routine consists of eight subroutines which are used by jobs and tasks to perform the
functions mentioned above. The eight subroutines which a re a part of the Executive routines
a re :

a. FINDVAC

b. NOVAC

c . CHANGE JOB

d. END OF JOB

e. JOBSLEEP

f. PRIORITY CHANGE

g. DUMMY JOB

h. WAKE JOB

2.1 .1 FINDVAC AND NOVAC SUBROUTINES. The FINDVAC and NOVAC subroutines of
the Executive routine provide for the scheduling of jobs. The FINDVAC subroutine is
used to schedule a job which requires a fairly large amount of temporary storage for the
variables involved in the job. This routine reserves a VAC (vector accumulator) area
for use with a job and places the job on the Executive's core set list.

By placing the job on the core set list, the job is scheduled and a core set area is reserved
for the job. Therefore, when a job is scheduled through the FINDVAC subroutine, a VAC
area consisting of 44 memory registers and core set area consisting of twelve memory
registers are reserved for use by the job. Figures 2-1 and 2-2 show the core set and VAC
areas used by the computer.

2-1

Core Set
Area #O

Core Set
Area #1

Core Set
Area #2

Core Set
Area #3

Core Set
Area #4

Core Set
Area #5

Core Set
Area #6

Memory
Address

140

146

147

150

151

152

153

+

154

167

17 0

203

2 04

217

220

233

234

247

250

26 3

+

4

+

+
4

+

Use

MPAC (Multi-Purpose Accumulator)

MODE (+1 for TP, + O for DP, o r -1 for Vectors)

LOC (Location Associated with Job)

BANKSET (Usually contains BBANK Setting)

PUSHLOC (Word of Packed Interpretive Parameters)

PRIORITY (Priority of Present Job and VAC Area
Address, if required)

(See Note)

(See Note)

(See Note)

(See Note)

(See Note)

(See Note)

NOTE: The 12 memory locations in each core set area are used a s
those i n Core Set Area # 0 shown above.

Figure 2-1. Executive's Core Set List

2 -2

Memory
Address Use

VAC Area #1

VAC Area #2

e VAC Area #3

VAC Area 84

VAC Area #5

04 31

0432

0504

0505

0560

0561

1
0634

06 35

1
0710

0711

07 64

~~~~ ~ ~ ~~ ~ ~~ ~~ 

VAClUSE - Used to indicate if VAC area is in use. 

VAC2USE 

VAC 3USE 

VAC4USE 

VAC5USE 

Figure 2-2. Executive's Vac Areas 

2 -3 



Whenever a job doesn't require a large amount of storage capacity and its requirements 
a re  satisfied by the storage provided by the core set  area,  the NOVAC subroutine is used 
to schedule the job. This subroutine places the job on the core set  list,  thereby schedul- 
ing the job and reserving a core set  area for use by the job. 

In order for a job to be scheduled, the job o r  task desiring to schedule the job supplies 
either of these two subroutines, FINDVAC o r  NOVAC, with the priority number and the 
starting address of the job to be scheduled. The job o r  task scheduling the job loads the 
Accumulator register of the computer with the priority number of the job prior to trans- 
ferring control to the Executive's FINDVAC or  NOVAC routines, The two memory reg- 
isters immediately following the instruction which transfers control to either of these 
routines of the Executive, contains the complete starting address of the job. 

The first thing done by either of these routines, as shown by the flow chart in Figure 2-3, 
is to temporarily store the priority number contained in the Accumulator register. Next 
the routine temporarily stores the complete address of the job being scheduled which is 
contained in the two memory registers following the transfer of control instruction which 
routed control to either FINDVAC o r  NOVAC. The complete address of the exit point of 
the scheduling routine is temporarily stored so control can be returned to the job o r  task 
at this point after completing the scheduling. 

If the NOVAC subroutine is being used, the core set areas are  scanned to find one which is 
not in use. This is accomplished by ftlooking7f at the contents of the priority register in 
each of the core set areas. The priority register contains the priority number of the job 
for which the core set area is reserved if it is reserved. If the core set is not reserved 
for a job, the priority register will contain a - 0 .  

If an unreserved core set  area is not found, the Program Caution indicator is lighted. Also, 
the information for the display of VERB 05,  NOUN 31  and 01202 in R 1  is provlded to the 
T4RUPT routine. This Verb, Noun and failure number display means: (VERB 05) Display 
octal component 1, 2, 3 of (NOUN 31) FAIL REGISTER and (01202 in R1) EXECUTIVE OVER- 
FLOW - NO CORE SETS AVAILABLE. A f t e r  this is done, a TC TRAP condition is forced 
which causes the processing of the RESTART routine. 

If the FINDVAC subroutine is being used, after storing the priority number, starting ad- 
dress and return address, the five VAC areas are scanned to find one which is available. 
When one is found available, it is reserved for the job and the address of the VAC area is 
stored. Then, the core set list is scanned to find an available core set work area as was 
previously discussed for the NOVAC subroutine. The remainder of the FINDVAC sub- 
routine is identical to that of NOVAC except that the address of the reserved VAC area is 
also stored in the core set area. 

If a VAC area is not found available when the VAC areas a re  scanned, the Program 
Caution indicator is illuminated. Also, the information for the display of VERB 05, 
NOUN 31 and 01201 in R1 is provided to the T4RUPT routine. The display in R1 of the 
DSKY (01201) means EXECUTIVE OVERFLOW - NO VAC AREAS AVAILABLE. After this 
is done, a TC TRAP condition is forced which causes the processing of the RESTART routine, 

2-4 



READ L m o R E  
PRIDRmY L ADDREBB 
OF JOB TO BE 
WXCDULCDFROM 
IICHEPUWO PROQMM 

READ h STORE 
PRIORCI'Y (I ADDREBB 
OF JOB TO BE 
SCHEDULED FROM 
SCHEDULMG PROGRAM 

I 

4 

4 

+ 
SAVE COMPUTE SAVE COMPLETE 
ADDRESS OF Em 
POWT OF SCHEDUWO 
PROORAM 

ADDREBB OF EXTI' 
POI" OF SCHEDULING 
PROGRAM 

SCAN VAC AREAS TO 

NOT M USE 
FIND ONE WHICH m b 

w 
SCAN CORE SET LLBT 
TO FIND A CORE SET 
AREA NOT m USE 

ADDRESS OF RESERVED 

RESERVE CORE SET 

.WORE AIIIIHELII O F  
VAC AREA IF ONE (8 

4 

ADDREBE OF JOB 

SET AREA 
IN RESERVED CORE 

FURCE.TC TRAP 

Figure 2-3. Executive's Findvac and Novac 

2-5 



After finding an unreserved core set, the priority number and associated VAC area ad- 
dress  of the job being scheduled are  stored in the core set area. Figure 2-1 shows which 
memory registers of the core set a re  used for the storage of the priority number and VAC 
area address. 

If core set area #O was loaded a check ie made of the contents of the NEWJOB register. 
If NEWJOB contains @ or  x , a program abort is initiated. The Program Caution 
indicator ie illuminated, VER Q 05, NOUN 31 a re  displayed and 01103 (UNUSED CCS 
BRANCH EXECUTED) is displayed in Regieter 1 of the DSKY. A TC TRAP is forced and 
a RESTART occurs. If NEWJOB contained 0 , it is now set  to@ . If NEWJOB was 
> @ , it was not changed. 

A check is made to see if the priority number of the job being scheduled is higher than the 
priority number of the job presently being processed. If the priority of the job being 
scheduled is higher than the one presently being processed, the number of the core set re- 
served for the job being scheduled is placed into a memory register called NEWJOB. If 
the priority of the job is equal to o r  less than that of the job preeently being processed, 
the register NEWJOB is not changed. In either case, the stored return address of the job 
o r  task performing the scheduling is read and used to return control to the scheduling job 
or  task. 
The register NEWJOB is checked at least every 20 ms by every job. If the register con- 
tains + 0 ,  there has not been a job scheduled which has a higher priority than the one 
being prOCes8ed, so the processing of the job presently being processed continues. If the 
contents of NEWJOB is greater than +0,  a positive quantity, a job has been scheduled 
which has a priority higher than the job being processed. This positive quantity in NEW- 
JOB is the core set number of the core set reserved for the higher priority job which was 
placed in NEWJOB by the Executive routine when the job was scheduled. Whenever this 
condition exists, control is transferred to the higher priority job under control of the 
Executive's CHANGE JOB subroutine. 

Both of the subroutines, FINDVAC and NOVAC, a re  very similar, The only real differ- 
ence is that FINDVAC reserves a VAC area while the NOVAC subroutine does not. 

2 .1 .2  CHANGE JOB SUBROUTINE. The CHANGE JOB subroutine of the Executive pro- 
vides the capability of changing the processing control from one job to another. The 
changingfrom one job to another is done whenever, the job presently being processed is 
no longer the highest priority scheduled, active job. Control is routed to this subroutine 
whenever the NEWJOB register is interrogated and is found to contain a core set area 
number. The only time that NEWJOB will contain a core set area number is. 
when it is placed there by the FINDVAC o r  NOVAC subroutines if  the job scheduled has a 
higher priority than the job presently being processed. At all other times, with the ex- 
ception of Dummy Job and Self Check, NEWJOB will contain + O .  

Figure 2-4 is a flow chart of the Change Job subroutine. This subroutine can be entered 
from a basic or an interpretive job. The first thing that is done is to store the complete 
address of the exit point of the job being suspended in the core se t  area associated with the 
job that is to be processed next. This address is stored so that later, when the job being 
suspended again becomes the highest priority scheduled job, processing can be resumed at 
the point where the processing was suspended. If the Change Job subroutine was entered 
from an interpretive job, the location address stored will be complemented. 

2-6 



STORE THE COMPLETE ADDRESS 
AT WHICH THE JOB BEING 
PROCESSED IS SUSPENDED IN 
THE CORE SET AREA CONTAINING 
THE NEW JOB DATA, AND TRANS- 
FER THE COMPLETE ADDRESS 
OF THE NEW JOB TO CORE SET 
AREA NO. 

EXCHANGE THE REST OF THE 
DATA IN CORE SET AREA #O 
WITH THE DATA IN THE CORE 
SET AREA CONTAINING THE NEW 
JOB 

I SET NEW JOB = + O  I 

JOB AT POINT 

ADDRESS STORED 
IN CORE SET #O 

. .  

. .  

NOTE: CORE SET AREA #O IS USED FOR THE JOB 
CURRENTLY BEING PROCESSED. 

17515 

EXECUTIVE'S CHANGE JOB 

Figure 2-4. Executive's Change Job 
2-7 



After this has been done, the Information stored in core set  area # 0 ,  associated with the 
job being suspended, Is exchanged with the information contained In the core set area speci- 
fied by the number contained In NEWJOB. NEWJOB contains the relative address of the 
core set where the highest priority job's information is stored. By moving this infor- 
mation to core set # O ,  the processing of this job is enabled. 

A f t e r  the data is exchanged, NEWJOB is se t  to + O .  Then, the starting o r  resumption address 
(whichever is applicable) of the highest priority scheduled job is read from core set  area #O 
and is used to transfer control to the job. If the job is interpretive, the location address will 
be complemented prior to transferring control. 

2 .1 .3  END OF JOB, JOB SLEEP, AND PRIORITY CHANGE SUBROUTINES. Since a major 
portion of these subroutines is identical, the subroutines are presented together. 

The END OF JOB subroutine is used to remove a job from Executive consideration. This 
subroutine is %alledtT by the job which is to be terminated. Therefore, the job must be 
processed at the time it is terminated. 

The JOBSLEEP subroutine is used to deactivate a job or  willfully suspend the processing 
of the job. This subroutine is used by a job to deactivate itself o r  put itself to sleep 
whenever it must wait for data, use of a piece of equipment o r  for a particular condition 
to exist. When a job is put to sleep, the processing of lower priority scheduled jobs can 
be accomplished. 

The PRIORITY CHANGE subroutine is used to change the priority of the job presently 
under execution. This subroutine is used by a job to change its own priority. This job 
will return to the caller a s  soon a s  its priority is again the highest. 

The flow diagram for these three subroutines is shown in Figure 2-5. If the END OF JOB 
subroutine is used to terminate a job, the job is removed from the core set list by setting 
the priority register of core set area #O to negative zero. By doing this, the job is not only 
removed from the scheduling list, but this makes the core set area available for use by 
other jobs. After making the core set area available, a check is made to see if  a VAC 
area was used by the job being terminated. If a VAC area was used, it is made available 
for use by other jobs by setting the address of the VAC USE register in that VAC USE regis- 
ter. This is an indication that VAC area is unreserved. 

The remaining core set areas a re  scanned to find the highest priority, nonsleeping job. 
After the core set areas a r e  scanned, the highest active priority is checked to see if 
this job is DUMMY JOB. If it is, control is transferred to DUMMY JOB. 

After the check is made for DUMMY JOB, an additional test is made to see if a job change 
is required. A job change will be required when the entry to this subroutine was from 
the END OF JOB subroutine subroutine and DUMMY JOB was not highest priority. 

Control is transferred to the CHANGE JOB subroutine with the relative address of the core 
set area which contains the highest priority active job. The CHANGE JOB subroutine then 
uses this information to exchange the information in core set #O with the appropriate core 
set area and transfers control to the highest priority job. 

2-8 



STORE NEW PRIORITY 

EXIT POINT OF JOB 
WHICH IS HAVING ITS 

I PRIORITY CHANGED I 

I I CHANGE PRIORITY 
NUMBER 

MAKE CORE SET X0 
AVAILABLE FOR USE 
BY OTHER JOBS 

VAC AREA 
SED 

MAKE VAC AREA 
AVAILABLE FOR 
USE BY OTHER JOBS 

STORE ADDRESS OF 
EXIT POINT OF JOB 
TO BE PUT TO SLEEP 
IN CORE SET #O 

COMPLEMENT 
PRIORITY NUMBER 
O F  JOB & STORE IN 
CORE SET #O'S 
PRIORITY REG. 

SCAN CORE SET 
AREAS FORJOB 
WITH HIGHEST 
PRIORITY 

+ 

REQUIRED? 

1"" 
ENTER CHANGE JOB 
WITH RELATIVE 
ADDRESS OF THE CORE 
SET CONTAINING THE 
HIGHEST PRIORITY IN 
NEW JOB 17559 

Figure 2-5. Executlvels Prlority Change, End of Job and Job Sleep 

2-9 



The JOBSLEEP subroutine, see Figure 2-5, stores the complete address of the point in 
the job where it should be awakened. After this has been accomplished, the priority 
number stored in core set area #OB (which is the priority of the job being put to sleep) is  
complemented. This cause6 the contents of the register to become a negative quantity which 
signifies a sleeping job. Note that the job is still scheduled on the core set list but it has 
been put into an inactive state by complementing its priority register. 

When the job has been put to sleep, the remaining core set areas are scanned to find the 
highest priority active job. After the core set areas are scanned, a check is made to 
determine if the highest priority active job is DUMMY JOB. If it is, control is transferred 
to DUMMY JOB. If DUMMY JOB is not the highest priority active job, a test is made to 
determine if a job change will be required. A job change will be required when the entry 
to this subroutine was JOBSLEEP. 

Control is transferred to the CHANGE JOB subroutine with the relative address of the core 
set area's highest priority, active job. The CHANGE JOB subroutine again exchanges the 
information of the iobs contained in the core set areas so that the information for the job to 
be performed is in core set area #O. Then control is transferred to the job using the address 
stored in core set area #O. 

The PRIOCHNG (Priority Change) subroutine, also shown in Figure 2-5, stores the new 
priority to be assigned to the job being processed. After thie has been accomplished, the 
complete address of the point that this job was at the time control wa8 transferred to 
PRIOCHNG is stored. The priority number contained in core set area #O is now changed 
to the new priority. 

The remaining core set areas are now scanned to find the highest priority active job. 
After the scanning of the core set areas has been accomplished, a check is made to see 
if DUMMY JOB is the highest active priority. When PRIOCHNG subroutine is used, 
DUMMY JOB will not be the highest priority active job. 

A check is now made to see if a job change is necessary. If the new priority assigned by 
the calling job to itself is still the highest, control is transferred to the caller. If it is 
not the highest, a job change will be required. The CHANGE JOB subroutine will ex- 
change the information in the core set area which has its relative address in NEWJOB 
with the information in oore eet area X O .  Control le transferred to the new highest priority active 
job using the address stored in core set area #O. 

2 .1 .4  DUMMY JOB SUBROUTINE. (See figure 2-6) The Dummy Job subroutine provides 
the computer with something to do if no other jobs require processing. It is performed 
under control of the Executive routine, is always scheduled to be processed, and has the 
lowest priority of any job. Therefore, any time there are no other active jobs scheduled 
on the job list, DUMMY JOB is processed. 

Whenever Dummy Job is processed, the COMPUTER ACTIVlTY indicator is not illumi- 
nated. Any time another job is being processed under control of the Executive routine, 
the indicator is illuminated. This indicator i s  extinguished whenever the DUMMY JOB is 
entered and is illuminated when the DUMMY JOB is left. 
The flow diagram of the Dummy Job is shown in figure 2-6. Control is transferred to thie 
subroutine through the Executive Change Job subroutine when the Dummy Job's priority is 
the ?!highestff of dl scheduled jobs. When control is routed to Dummy Job, the COM- 
PUTER ACTNITY indicator is extinguished by setting bit 2 of output channel 11 to a 
binary 0 .  

2-10 



0 DUMMY 

w 

SET NEWJOB = -0 

i 

TURN OFF COMPUTER 
ACTIVITY LAMP 
(SET CH11, BIT 2 = 0) I 

YES (NEW JOB IN POSITION 
YES FOR EXECUTION) 

TO PROCEE 
SE LF ' 

NO 

I7558 

Figure 2-6. Executive's Dummy Job 

2-11 



After servicing the COMPUTER ACTNlTY indicator, a check is made to determine if a 
new job of higher ptiority has been scheduled. This is accomplished by checking the con- 
tents of the NEWJOB register. The NEWJOB register is set to the relative address of the 
core set area reserved for a scheduled job if its priority is higher than the job presently 
being processed. If NEWJOB contains a core set number greater than + O ,  the COMPUTER 
ACTIVITY indicator is illuminated by setting bit 2 of output channel 11 to a binary one. 
Control is then routed to the Change Job subroutine which routes control to the highest 
priority job. 

L€ the NEWJOB register contains a - 0 ,  control is transferred to the self check routine. 
Periodically during the self check routine, the NEWJOB register is checked to see if a 
job with a priority higher than Dummy Job is to be performed. 

The self check routine has the capability to insert a +O into NEWJOB and to set up a 
special test a s  a part of the self test routine. In this special test case, the COMPUTER 
ACTIVITY indicator is illuminated and the address of the new job which had previously 
been inserted into the A and L registers is inserted into the Z and BB registers, respec- 
tively. 

2.1 .5  JOB WAKE SUBROUTINE. The JOB WAKE subroutine is used to wake up o r  to 
reactivate a sleeping o r  deactivated job. A job or  task other than the sleeping job must 
awaken the sleeping job. The job o r  task wishing to awaken a job must furnish the JOB 
WAKE subroutine with the awakening address of the sleeping job. This address was 
stored in the core set area of the sleeping job when it put itself to sleep. The awak- 
ening address supplied to the JOB WAKE subroutine is used to find the sleeping job. 

The flow chart of the JOB WAKE subroutine is shown in Figure 2-7. On entry to this 
routine, the awakening address is available and is stored temporarily for use in this 
subroutine. After storing this address, the complete address of the return point of the 
job o r  task using this routine is stored. This address is used to return control to the job 
o r  task after awakening the job. When this has been accomplished, a scan of the job 
areas is initiated to find a sleeping job. When a sleeping job is found, the awakening 
address stored in the core set area is checked against the one supplied by the job or  
task using the JOB WAKE subroutine. I€ the job is not the correct job, the scan continues. 
If the sleeping job is not found, control is returned to the job or  task which called for the 
use of the subroutine. However, if the sleeping job is found, the priority number is com- 
plemented, thereby reactivating or  awakening the job. 

The rest of the flow chart is identical to the end of NOVAC FINDVAC. 

2-12 



ENTER N T H  
C O V P L E T E  ADDRESS 
OF POINT TO RESUMF 
SLEEPING JOB 

4 
SAVE COhtPLETE 
ADDRESS O F  EXIT 
POINT OF PRM;. 
REQUESTING JOB 
\\‘AKE 

(IN ORDER 0 - 6) 

INCREMENT COUNTER 

S E T  NEWJOB - *o 

FORCE T C  T R A P  

0 RESTART 

I COMPLEMENT 
PRIORITY & STORE 
IN PROPER CORE I 
SET AREA. MAKE 
U P  THE COMPLETE 
A1)I)RESS O F  THE 
A\\AKENED JOB 

I No 

ADDRESS OF JOB 
IN RESERVED CORE 

YES 

S E T  NEW JOB T O  CORE 
S E T  AREA RESERVED 
FOR AU’AKENED JOB ,7s, 

Figure 2-7. Executive’s Job Wake 

2-13 



2.2 WAITLIST ROUTINE 

The Waitlist routine performs a scheduling function for proce ssing required at sp  becific 
times within the nexttwo minutes after scheduling occurs. This time dependent-processing 
is referred to as a TASK as opposed to jobs which are processed according to the priorities 
assigned to the job. 

Any job or task can call upon the Waitlist routine to schedule a task. The scheduling is 
accomplished by the job or task supplying to the Waitlist the time from the present time that 
the task should be executed and the starting address of the task. With this information 
available, the control of the computer is transferred to the Waitlist routine which performs 
the scheduling. After scheduling the task, control is returned to the job or task which called 
for the use of the Waitlist routine. 

The computer programming provides the capability of scheduling up to nine tasks at any one 
time. The Waitlist routine, therefore, maintains two lists as shown in Figure 2-8. One of 
the lists (LIST 1) has nine entries, including the TIME 3 counter, and is used to store the 
time values for the tasks. The other list (LIST 2) stores the task addresses or starting ad- 
dresses of the scheduled tasks and has eighteen entries. The various tasks (their times 
and addresses) which are scheduled are maintained on these two lists in chronological order. 

The overflow of the TIME 3 counter is used to initiate T3RUPT, a program interrupt. The 
overflow implies that it i s  time to process the task address in LIST 2 and LIST 2 + 1. 

The TIME 3 counter, as shown in Figure 2-8, is the topmost entry of LIST 1. It will at all 
times contain the time remaining till it is time to process the task which should be processed 
next, of those tasks which are scheduled. This time value in the TIME 3 counter is actually 
OVERFLOW minus TIME TILL TASK EXECUTION. If it is assumed that the TIME till TASK 
EXECUTION, or r?, T is . 2 minutes, the contents of the TIME 3 counter will be equivalent to 
overflow -. 2 minutes. (NOTE: Remember that tasks are executed when'the TIME 3 counter 
overflows). 

The TIME 3 counter is  then incremented towards overflow every 10 ma. When it does over- 
flow, it i s  time to execute the task whose starting address is  stored in the corresponding 
LIST 2 entry. 

The time values in the remaining entries of LIST 1 are basically stored as the complement 
of the time between a particular task and the immediately preceding task. The actual values 
have OOOOlg added to them so that when they are processed into the TIME 3 counter, the 
overflow will occur at the correct time. The time entry in LST 1 position of LIST 1 is ex- 
pressed as: 

The LST 1 + 1 time entry is expressed as: 

'TIST 1 + 1 = - (AT, - AT2) + O O O O l g  

where A TLST and A TLST + are the values stored in the corresponding LIST 1 
entries and AT1, AT , and AT3 are the actual times till the corresponding task is to be 
executed. Figure 2-#shows this on'a time line diagram. 

2- 14 



TASKTIMES - LIST 1 

(=I TIME 3 

LST 1 E3, 1400 

LST 1 + 1 E3,  1401 

L S T 1 + 2  E3, 1402 

LST 1 + 3 E3, 1403 I 
LST 1 + 4 E3, 1404 

~~ 

LST 1 + 5 E3, 1405 

LST 1 + 6 E3, 1406 

LST 1 + 7 E3, 1407 

TASK ADDRESSES - LIST 2 
(2 CADR) 

f 3 
GEN ADDR BBCON 

LST 2 E3, 1410 LST 2 + 1 E3, 1411 
I I, 

LST 2 + 2 E3, 1412 

LST 2 + 17 E3, 1431 LST 2 + 16 E3, 1430 

LST 2 -t- 15 E3, 1427 LST 2 + 14 E3, 1426 

LST 2 +  13 E3, 1425 LST 2 + 12 E3, 1424 

LST 2 + 11 E3, 1423 LST 2 + 10 E3, 1422 

LST 2 + 9 E3, 1421 LST 2 + 8 E3, 1420 

LST 2 + 7 E3, 1417 LST 2 + 6 E3, 1416 

LST 2 + 5 E3, 1415 L S T 2 + 4  E3, 1414 

LST 2 + 3 E3,  1413 

NOTE: 1. TIME 3 is associated with LST 2 and LST 2 + 1, LST 1 is associated 
with LST 2 + 2 and LST 2 + 3, etc. 

LST 2 + 17 should contain the starting address of ENDTASK. The 
Waitlist routine will transfer control to the abort routine which in- 
itiates the failure displays and the restart routine when the next 
entry is made if ENDTASK is not as indicated above. 

3. All scheduled tasks are tabulated in chronological order in LIST 1 
and LIST 2. If two tasks a re  scheduled to be done at the same time, 
the task scheduled first will be done first. 

4. The eraeable memory address of each register used as  a part of the 
list is shown following the register name as  0026 o r  E3, 1400, etc. 
These numbers a re  in octal. 

2. LST 1 + 7 should contain the time for ENDTASK and LST 2 + 16 and 

Figure 2-8. Waitlist's Waiting List 

2-15 



T o  = PRESENT TIME 

T1, 2, 3, 4 

A%, 2, 3, 4 

 AT^^^ 1 

 AT^^^ 1 + 1 

= TIME AT WHICH TASKS ARE PROCESSED 

= TIME FROM PRESENT TO PROCESS TASK 

ATT3 = TIME VALUE FOR TIME 3 COUNTER (OVERFLOW - AT1) 

= TIME VALUE FOR LIST 1 = C -  (AT, - AT1) + 0000181 

= TIME VALUE FOR LIST 1 + 1 =[ - (AT3 - AT,) + 0 0 0 0 1 8 ~  

Figure 2-9. Time Values Stored in List 1 

2-16 



By storing the time values in this manner in LIST 1, the values can be directly moved up 
the list. When a task time is moved from LST 1 into the TIME 3 counter, POXMAS (377778)  
and the contents of the TIME 3 counter a re  added to the contents of LST 1. and the result is 
inserted into TIME 3, Whenever a task is to be processed next in chronological order,  the 
time value inserted into the TIME 3 counter specifies OVERFLOW minus the time remaining 
till the task is to be processed. OVERFLOW is 400008. No additional computations must be 
performed on the time value prior to inserting it into the TIME 3 counter. 

When a new task is being scheduled, the time list ,  LIST 1, must be searched in order to find 
the appropriate chronological position to insert it on the list. When the position is found, the 
remaining tasks which follow chronologically must be displaced one position on the list. Also, 
the first following time value must be modified so that it will stfiZ be executed at the proper 
time. An example of this is shown in Figure 2-10 where a new task is scheduled to be pro- 
cessed at time T5, T5 is greater than T2 but less  than T3. Note that the time values for 
task 3 and 4 have been displaced one position on the list and that a new time value has been 
calculated for task 3. The task addresses corresponding to tasks 3 and 4 are  also displaced 
one position in LIST 2 with the task address of task 5 replacing the task address for task 3. 

A simplified flow chart for the Waitlist routine is shown in Figure 2-11. The first action 
performed by this routine is to temporarily store the task address and the time from now 
till the task is to be performed which is supplied by the job or  task which called for the use 
of the Waitlist routine. Then, the complete address of the calling job or  task is stored so 
that control can be returned to this job or  task &er the scheduling has been completed. 

After this has been accomplished, the TIME 3 counter is read and a check is made to deter- 
mine if the TIME 3 counter has overflowed. Another check is made to determine if the time 
till new task is greater than the time till T3 counter overflow. If not, a new value is calculated 
and inserted in the TIME 3 counter. The former contents of the TIME 3 counter are  appropri- 
ately modified and inserted in LST 1 of LIST 1. A l l  the remaining task times are  displaced 
down one position in LIST 1. The new task addresses are  inserted in LST 2 and LST 2 + 1 and 
the remaining task addresses are  displaced two registers down the address list (LIST 2). 

If the time till new task is less than time till TIME 3 counter overflow, the remaining task times 
in LIST 1 are  compared to the new task time. This is done in chronological order until the 
proper position is determined. When the position in  determined, the task times following the 
new task time chronologically are  displaced one position after the new task time expressed as 
a A T between it and the sum of the preceding A T task times is ineerted into the located posi- 
tion in LIST 1. A new A T value is calculated for the first displaced task following the new task 
which was inaerted on the list. After LIST 1 is rearranged, the addresses for the new task is 
inserted in ita proper location in LIST 2 and the remnining contents of LIST 2 are shifted two 
registers down the list. 

In either case, as discussed above, after placing the new task on the two lists, a check is 
made to make sure that too many tasks have not been scheduled. This is accomplished by 
checking to see that the complement of the ENDTASK task address was located in LST 2 + 16 
and LST 2 + 17. ENDTASK is a task which gives the computer something to do when nothing 
else has been time scheduled. If the complement of ENDTASK was in these positions, the 
stored complete return address of the scheduling task o r  job is used to return control to the 
job or task, If it was not present in these positions, too many tasks have been scheduled and 

2-17 



TO T1 T Z  
I 

FAT5- 
1 AT4 

NOTE: Since AT5, which was supplied by the scheduling routine, 
is larger than the present AT2 and smaller than the pres- 
ent AT3,  the contents of LST 1 + 1 is set to - (AT5 - ATz) 
+ O O O O l 8  and - (AT3 - AT5) + OOOOlg is set into LST 1 + 2. 
The former contents of LST 1 + 2 and the other LIST 1 
registers are moved down one register. 

Figure 2-10. Maintaining Chronological Waiting List 

2-18 



INCREMENT LIST 1 

LIST 1 LST CAN BE 
INTERROGATED FOR 

* 
PICK CP & STONE 
TINE TILL TASK 
& TASK ADIIRESS 

STORE RETURN 
ADDRESS O F  
CA LLMG PROGRAhl 

r + 
READ T3 COUNTER AND 
CORRECTFOROVER- 
FLOW IF REQZ'IRED 

t 

1 
i 

., < PROGRAM CAZ'TION 

I t1  . 01203 

TOO MANY TASKS) a FORCE TC TR.AP 

0 RESTIZRT 

IFSERT ATNEH. TASK 
ISTO API'HOPI~IATk: 
LIST I LST 

IC , 

+ 
CALC. NEW A T  VALLIE: 

TASK 
FOR NEkT FOLID\VMG 

SHIFT REalAINING 
L I S T  1 TIMES DONN 
ONE POSITION 

1 
I 

CORRESPONDING TO 
POSITION IN LIST '2 

THE LIST 1 ENTRY O F  
RETI'RN 

17387 

Figure 2-11. Waitlist 

2-19 



the PROGRAM CAUTION indicator is illuminated. Also, VERB 05, NOUN 31 are  displayed 
along with 01203 in the DSKY register R1. The number 01203 indicates that there has been 
a Waitlist Overflow o r  that too many tasks have been scheduled. Then a TC TRAP condition 
is forced causing the execution of the RESTART routine, 

2 . 3  TIME 3 PROGRAM INTERRUPT ROUTINE (T3RUPT) 

The T3RUPT routine is initiated by the overflow state of the TIME 3 through a circuit forcing 
function. The TIME 3 counter is set to overflow at specific times according to the informa- 
tion supplied to, and the scheduling performed by, the Waitlist routine. Therefore, whenever 
the TIME 3 counter overflows, it is time to process a particular task. 

The T3RUPT routine is used to initiate the processing of the task which was scheduled to be 
processed at the time of the TIME 3 counter overflow. The routine also moves all the task 
times and addresses up one register position in LIST 1 and two registers in LIST 2. The 
result of this is the loading of the TIME 3 counter with a new time value to increment towards 
overflow. 

Figure 2-12 contains the flow chart for the T3RUPT routine. Entry to this routine is forced 
whenever the TIME 3 counter overflows through the program interrupt priority control cir- 
cuit of the computer. The first action performed by this routine is to enter a value of 577778 
on the bottom of LIST 1. This  is the time value for the ENDTASK task which corresponds to 
a time to overflow, when inserted into the TIME 3 counter, of approximately 82 seconds. 
After this has been accomplished, all of the time values of LIST 1 a r e  moved up one position 
in the list. The contents of the TIME 3 counter are added to the time value from LST 1 
which is to be inserted into the TIME 3 counter and POSMAX (377778). The contents of the 
TIME 3 counter is added to the contents to be inserted into TIME 3 counter because the 
counter could have been incremented since overflow because of delays in initiating the pro- 
cessing caused by the overflow condition. This could be caused by a combination of inhib- 
iting interrupts and the scheduling of more than one task to be processed at a particular 
time. By adding the contents of the TIME 3 counter to the next time value, the correct 
times are maintained for the remaining tasks if the delay in processing occurs. Note that if 
the counter has not been incremented since overflow, this addition has no effect, POSMAX 
is added to prepare the value for overflow when inserted into the TIME 3 counter. 

A flag is set so that if the value inserted in TIME 3 was in overflow, the overflow wlll not be 
lost during the following operation. This is accomplished by setting RUPTAGN to +1 if the 
value inserted into TIME 3 was in overflow. If the value set into TIME 3 was not in over- 
flow, RUPTAGN will be set to - 0 .  

Having completed the manipulations on LIST 1, LIST 2 must be serviced. The complement 
of the contents of ENDTASK is inserted in LST 2 + 16 and LST 2 + 17.  After this has been 
accomplished, all of the task addresses stored in LIST 2 are moved up two registers. The 
address moved out of LST 2 and LST 2 + 1 rcgisters,  as a result of this operation, is used 
to transfer control to the desired task. When control is returned to the I'SRUPT routine, n 
check is made to determine if the TIME 3 counter is again in the overflow state by checking 
RUPTAGN. If the TIME 3 counter has overflowed, control is routed to the beginning of the 
T3RUPT routine which is processed again. If it is not in the overflow state, control is re- 
turned to the job which was interrupted. 

2-20 



ENTER TIME VALUE 
O F  82 SEC. ON 
BOTTOM O F  LIST 1 
(TIME INTERVAL FOR 
ENDTASK) 

- 
SHIFT ALL TIME 
VALUES IN LIST 1 
U P  ONE POSITION 

ADD c(T3 COUNTER) 
T O T H E V A L U E O F  
TIME TO BE INSERTED 
INTO THE T3 COUNTER 
TOCORRECTTHE 
TIME VALUE IN CASE 
THE T3 COUNTER HAS 
BEEN INCREMENTED 
SINCE OVERFLOW 

INTO T3 COUNTER 

+ 1  

TRANSFER CONTROL 
TO THE ADDRESS 
FORMERLY IN 
LST 2 AND LST 211 

0 OVER 

SET c(RUPTAGN) = +1 SET c(RUPTAGN) = -0 

I 

ENTER END TASK 
ON BOTTOM O F  LIST 2 

SHIFT ALL TASK 
ADDRESS IN LIST 2 UP 
TWO POSITIONS AND 
SAVE c(LST 2 AND 
LST 2+1) I7586 

Figure 2-12, Time 3 Interrupt Routine 

2-2 1 



2.4  PHASE TABLE MAINTENANCE ROUTINE 

The PHASE TABLE MAINTENANCE Routine consists of a group of subroutines which provide 
the initiation, termination, and progression through the mission o r  testing routines of the 
computer. The mission o r  testing routines are sometimes referred to as mission programs, 
testing programs o r  major modes. Throughout the description of the PHASE TABLE MAIN- 
TENANCE Routine, these routines will be termed major modes programs. The major mode 
programs supply the information required for the display of the program number on the 
DSKY's. Each of the major mode programs is assigned a program number which is displayed 
wUe the program is being processed. 

Each of the major mode programs is divided into a number of different phases. The PHASE 
TABLE MAINTENANCE Routine maintains a table for phase numbers for the major mode 
programs. The phase numbers are used to control the routing and progression through a 
major mode program. Also, if a failure occurs and requires a restart,  the phase numbers 
stored in the phase table a re  used to control the restarting of the major mode program at a 
particular phase of the program. The processing of the program would not necessarily begin 
at the beginning of the program nor at the phase specified by the phase number. 

The phase table, where the phase numbers of the various major mode programs are  stored, 
is actudly maintained in duplicate. This is done to assure that the correct phase number is 
obtained if a failure occurs. The two copies of the table a re  called -PHASE and PHASE. 
-PHASE stores the complement of the phase number while PHASE stores the actual phase 
number. The phase tables consist of twelve registers. 

2 . 4 . 1  PHASE CHANGE AND NEW PHASE SUBROUTINES. The PHASE CHANGE and 
NEW PHASE subroutines of.the PHASE TABLE MAINTENANCE Routine are  used by the 
major mode programs to change its phase number which is stored in duplicate in the 
phase tables o r  to initialize the phase tables for some major mode program operation. 
A flow chart of these subroutines is shown in figure 2-13. Except for the 'lead-inff op- 
eration, the two subroutines are identical and perform the same function. 

The PHASE CHANGE (PHASCHNG) subroutine is called by 

L TC PHASCHNG 

Lt-1 OCT PPP GG 

When transferring control to the PHASCHNG subroutine, the contents of the address in 
the Q register contain the phase number PPP in the three most significant octal digits. 
It also contains the group number in the two least significant digits. The contents of the 
Q register are masked to acquire the group number. This number is doubled and becomes 
the phase table relative address for use in indexing. The phase number is shifted two 
octal digits to the right and is stored in the A register. 

The NEWPHASE subroutine is called by 

L- 1 CA PPPPP 

L TC NEWPHASE 

Id1 OCT 0 0 0 G G  

2-22 



0 PHASCHNG 

THEGROUPNUKBER 
ACQUIEtE & PROCESS 

SEQUENCE 
FROM THE CALLPJG 

I TWO OCTAL DIGFr'S TO 
SHIFT PHASE NUMBER 

THE RIGHT 

0 NEW PHASE 

ACQUIRE & PROCESS 
THE GROUP NUMBER 

SEQUENCE 
FROM THE CALLING 

PHASE NUMBER IN 

I I N A  
L & mS COMPLEMENT I 

SELECT THE -PHASE & 
PHASE REGISTERS. 
THE RELATIVE 
ADDRESS OF THESE 

I REGIE~TERS IS THE 
PROCESSED GROUP I 

I NUMBER I 

. EXCHANGE THE 
CONTENTS O F  THE 
SELECTED PHASE 
REGISTERS WITH 
THE CONTENTS OF 

L I 

SELECT THE 

TERMINATION 
COMPLETE 

ADDRESS ASSOCIATED 
W m H  THE SELECTED 
PHASE REGISTERS. 
CONTROL IS 
TRANSFERRED TO 
THIS ADDRESS 

RETURN TO CALLER 

CONTENTS OF THE 
SELECTED PHASE 
REGISTERS LN A & L 

TERMINATION 
ADDRESS 

RETURN 

CALLER 

1 

Figure 2-13. Phare Change and New Phase 

2-23 

17569 



Therefore, when control is transferred to NEWPHASE, the phase number is in the A 
register. The contents of the address in Q contains the group number. The group num- 
ber is doubled and becomes the relative address of phase table. 

From this point on, PHASCHNG and NEWPHASE are  identical, The new phase number, 
which is in the A register is stored in the L register and the contents of the A register 
are  complemented. The group number is used to index the desired phase table registers,  
a -PHASE and PHASE. The contents of the selected -PHASE and PHASE registers are 
exchanged with the contents of the A and L registers, respectively, The former contents 
of the -PHASE register are checked to determine if they were equal to or  less  than pos- 
itive zero. If the answer is yes, the subroutines return control to the caller with the old 
contents of -PHASE and PHASE in the A and L registers, respectively. If the answer is 
no, control is transferred to the termination address associated with the selected phase 
table registers. 

2 .4 .2  NEW MODE EXCHANGE SUBROUTINE. The NEW MODE EXCHANGE (NEW- 
MODEX) Subroutine of the PHASE TABLE MAINTENANCE Routine is used by various 
major mode programs to set up the major mode program number which will be displayed 
on the DSKY by the T4RUPT routine. If the new major mode program number is the 
same as the present number, no change in the program number display i s  made by the 
T4RUPT routine. (See Figure 2-14.) 

Control is transferred to NEWMODEX by the caller with the address of the major mode 0 program number in the Q register. The program number is stored in MODREG. MOD- 
REG contains the present or new program number. The old contents of MODREG are  
compared to the new program number. If the two program numbers are the same, con- 
trol is transferred to the caller. If the old and new program numbers a re  not in agree- 
ment, the new program number has to be set up for DSKY display. The relay code for 
the most significant of the two octal digits is acquired from RELTAB (Relay Code Table). 
The contents of DSPTAB+lOD are saved and the relay code is inserted into bits 6 through 
10. The relay code for the least significant digit is acquired from RELTAB and inserted 
into bits 1 through 5 of DSPTAE!+lOD. Control is returned to the calling routine. The 
T4RUPT routine will cause the program number on the DSKY to be changed to the new 
number. 

2.4.3 CHECK MAJOR MODE SUBROUTINE. The CHECK MAJOR MODE subroutine of 
the PHASE TABLE MAIXTENANCE Routine is used by various major mode programs to 
sample the program number of the major mode programs in process. The data i s  used 
for routing purposes by the major mode program which uses this subroutine. (See 
Figure 2-15. ) 

Control is transferred to the Check Major Mode (CHECK" ) subroutine with the address 
of the check number in the return address (Q) register. The check number is comple- 
mented and added to the contents of MODREG. The contents of MODREG will be equiv- 
alent to the program number displayed on the DSKY. If the contents of MODREG and the 
check number are in agreement, the contents of the accumulator will be negative zero. 
Branching to the next subroutine is dependent upon the contents of the accumulator and 
the contents of the two addresses following the address in Q .  The exact action resulting 
from these two return points is dependent on the major mode program which called this @ subroutine. 

2-24 



0 NE WMODEX 

STORE NEW MAJOR 
MODE PROGRAM 
NUMBER IN NEWMODE 
REGISTER 

ACQUWE THE RELAY 
CODE FOR THE MOST 
SIGNIFICANT DIGIT 
FROM RE LTAB (RE LAY 
CODE TABLE) 

1 

4 

SAVE OLD CONTENTS 
OF DSPTAB+lOD 

v 1 

INSERT RELAY CODE 
I N B l " S 6 - 1 0 0 F  
DSPTAB+lOD 

ACQUIRE THE RELAY 
CODE FOR THE 
LEAST SIGNIFICANT 
DIGIT FROM RELTAB 

INSERT RELAY CODE 
I N B R S l - 5 O F  
DSPTAB+lOD 

A 
I pJ CALLER 

Figure 2-14. New Mode Exchange 

2-25 



0 CHECKMM 

ADD THE CONTENTS 
OF THE MODREG 
REGISTER TO THE 
COMPLEMENT OF THE 
MAJOR MODE CHECK 
NUMBER 

THE MAJOR\ 
P W U P K  NTTMRER YES 

SUBROUTINE SUBROUTINE 

17568 

Figure 2-15. Check Major Mode 

2-26 



SECTION I11 

INPUT/OUTPUT CONTROL ROUTINES 

INTRODUCTION 

This section of the study guide presents the routinee used to perform input and output func- 
tions of the LGC. . The routines are ueed by most of the programs of the LGC to perform the 
required input and output functions. Through these routines, the LGC is capable of com- 
manding spacecraft system modee, displaying and accepting information from the DSKYIs 
and Radar providing for telemetry input8 and outputo, controlling the positions of the RR 
antenna and the stable member, and remaining cognlzant of the PGNCS and other spacecraft 
system operatione. 

3 . 1  TIME 4 COUNTER PROGRAM INTERRUPT ROUTINE (T4RUPT) 

The TIME 4 COUNTER program interrupt routine (T4RUPT routine) is initiated whenever the 
TIME 4 counter overflows. Normally this time counter is set so that it will overflow every 
120 ms. Everytime it overflows, the T4RUPT routine is initiated and one o r  more of the 
following functions are performed: 

a. Updating the forward and lateral velocity meters and altitude meter.  

b.  Sampling and verification of the ISS mode of operation including turn-on. 

c. Sampling and verification of the Radar mode of operation. 

d. Monitoring the telemetry rates. 

e. Sampling of malfunction indications from the ISS. 

f. Control of the relays of the DSKY's for display of information, for commanding ISS, 
and other spacecraft modes, and for control of indicator panel'illumination. 
g. Servicing the RR mode requests and RR CDU fail inbit. 
h. Update the gimbal to pilot matrix. 
All of the programs which desire to perform any of the functions listed, provide the 
information to the T4RUPT routine. The T4RUPT routine then uses the supplied informa- 
tion to perform the appropriate input o r  output function. In return, the T4RUPT routine 
furnishes information to the other routines or  processing functions indicating the results of 
a desired action. 

A deviation from the normal 120 ms rate at which the T4RUPT routine occurs is if the relays 
a r e  manipulated. Whenever relays are driven, the TIME 4 counter is set to overflow in 20 
o r  30 ms. This is done so that the driving of the relay coils is terminated after a sufficent 
amount of time for the relays to latch into the proper configuration. This also prevents ex- 
cessive heat build up and power consumption. After a 20 o r  30 ms rupt has occurred, a 100 
o r  90 ms rupt is scheduled respectively, so that the nominal 120 ms interrupt rate is main- 
tained. 

3-1 



Figure 3-1 is a general flow diagram of the T4RUPT routine. Following this a more detailed 
flow chart of the routine is presented. The general flow chart is presented to enable the 
student to obtain an overall knowledge of what is accomplished by this routine and in what 
order it is accomplished. 

Referring to figure 3-1, entry is forced whenever the TIME 4 counter overflows. This occurs 
every 120 msec (with the exception of when DSKY or  LMP relays have been driven). The dis- 
play tables a re  serviced every 120 msec. This implies the capability of displaying new infor- 
mation or  change in information every 120 msec, thus providing the operation ffcontinuouslyff 
updated information. 

After servicing the DSPTAB's, a check is made to determine the pass through the T4RUPT 
routine. This is determined by looking at a counter which is initially set to 7 and is decre- 
mented every time a 120 ms interrupt routine is processed. Therefore, the counter expresses 
eight states; 7 ,  6, 5, 4, 3, 2, 1 and 0, Whenever the counter goes to 0, it is set  to 7. This 
counter is used to determine which of the 5 subroutines of the T4RUPT routine is to be 
processed for this interrupt. 

Noting the numbers adjacent to the lines one sees that when the counter is in the 3 or 7 state 
the G P  matrix is updated. If the counter is in state 0 the forward and lateral velocity meters 
along with the altitude meter receive updating. The counter in the 2 or 6 state routes ser-  
vicing to the ISS failure, turn-on, and gimbal Iock monitoring. Counter state 1 or  5 forces 
the T4RUPT into monitor the RR CDU fail inbit in addition to servicing RR moding and posi- 
tioning. Counter state 4 forces an update of the forward and lateral velocity meters and an 
update of the altitude rate meter. 

The following sections present detailed flow diagrams (figure 3-3 is located at the end of 
this chapter) illustrating how the program executes the T4RUPT routine, 

3 . 1 . 1  T4RUPT LEAD IN, 20, 30 MSEC RUPT, SERVICE DSPTABS. The overflow 
of the TIME 4 counter forces the program interrupt T4. The first operation after trans- 
ferring control to the T4RUPT program is to store the address of the exit point of the 
interrupted program to enable a return to the interrupted program at the completion of 
the specific T4RUPT routine, Setting the output channel 10 to zero removes the drive cur- 
rent to the DSKY relays. This is done regardless of whether DSKY relays were set  or  
not on the previous pass through T4RUPT. 

The contents of memory register T4LOC is checked to identify what type of interrupt 
this is. If it was either a 20 or  30 msec rupt approximate routing is accomplished to 
keep the total normal time equal to 120 msec. Thus for a 20 msec rupt, 100 msec is 
added prior to going through the normal T4 routing, for a 30 msec rupt, 90 sec are 
added in real time. 

Then, the contents of memory register, DSRUPTSW (DISPLAY RUPT), is checked. 
Whenever the normal 120 m s  interrupt occurs, the DSRUPTSW will be positive or  
positive zero. If i t  is positive, the contents of DSRUPTSW is decremented or  if it is 
positive zero, it is set  to 7. The decrementing and setting to 7 of the DSRUPTSW is used 
to control the routing to the various subloops of the T4RUPT routine. The contents 
of DSRUPTSW is used in this manner later in  the routine. 

3-2 



I SERVICE DSPTARS AND 
LMP CMDS I 
SET T4 COUNTER TO 
OVERFLOW IN THE 
APPROPRIATE TIME 

SERVICE T4 ROUTING 
CONTROL IT4 LOC 
AND DSRUPTSW) 

960 MSEC 0 WHICH PASS 
THROUGH T4 RUPT? 
(DSRUPTSW) 

960 MSEC 

A LTOUT 

UPDATE FWD AND 1 , 5  2 , 6  G P  MATRIX 
LAT VEL. METERS 480 480 

MSEC MSEC UPDATE G P  MATRIX 

r 1 . 

I I MONITOR RRCDU FAIL 
AND SERVICE RR MODE 

I UPDATE G P M A T R M  I 

IMU MON 

SERVICE CH 30 
STATE CHANGES 
(BITS 9, AND 11-15) 

~~~~~~~~~ ~~~~~ ~ ~ ~~~~~ 

PROCESS TURN ON
REQUEST

SERVICE CH 33
STATE CHANGES
(BITS 11 - 13)

CHECK FOR
GIMBAL LOCK

!
ALTROUT

UPDATE FWD AND
LAT VEL. METERS

UPDATE ALT. RATE
METER

J

I8523

Figure 3-1. General T4RUPT

3-3

A check of the word in memory called LMPCMD is made. This word acts a s a pseudo
DSPTAB and is used for setting particular relays associated with LM interfacing. A unique
requirement calling for a 30 msec "power on time" rather than the DSKY relay 20 msec on
time. Assuming that a LMPCMD is required, flag bit 15 is reset so that this route won't
be forced next pass. A special relay code of 740008 is added to the marked low order eleven
bits that were in LMPCMD and the relay bits and code are placed in output channel 10. After
the data is in channel 10 the time 4 counter is set to overflow in 30 msec and the appropriate
routing is placed in T4LOC. Now the interrupted program is resumed.

Assuming a LMPCMD is not required a check of DSPTAB 11 is made. Lf it is negative some
other program has made the request for a display of one or more of the items listed for
DSPTAB 11. Note table 3-1 which depicts the contents of all display tables. At this point
a brief discussion on the mechanism of displaying information will be presented.

Referring to figure 3-2, note that there is an interrelationship between a calling program,
the T4RUPT routine, and the output channel 10, The calling program (which desires a
display) supplies the appropriate code for the display to the appropriate DSPTAB. If it
is a character display for R1, R2, R3, a verb-noun or program number, the low order 9
DSPTAB's a r e used. The calling program places the code in the correct DSPTAB and
sets the sign of that DSPTAB negative (i. e. , bit 15 = 1). This bit 15 will identify to the
T4RUPT program that the contents of that particular display table requires processing.
Notice bits 12 - 14 a r e not used in the DSPTAB word. Only the low order 11 bits (and bit
15) have any significance. By virtue of the address of the particular DSPTAB a 4 bit
code is assigned. This 4 bit code is a relay code whose sole function is to apply ground
to the appropriate relay bank associated with the desired display.

T4RUPT scans the DSPTAB's every 120 msec starting at DSPTAB 11. If a particular
DSPTAB is negative, T4RUPT "attaches" the particular relay code to the low order relay
bits and places the resulting 15 bits into output channel 10 which, in turn, results in the
activation of the appropriate relays causing the desired display,

I€ a requirement to drive a C relay exiets, reset bit 15 so that on the next pass a redisplay
of identical data will not occur. Then, extract low order 11 bits (relay bits) and attach
associated 4 bit relay code.

Transfer the entire 15 bit display word into output channel 10 and identify 20 msec RUPT.
This allows sufficient time for the latching relays to pull in.

If there is not display requirements in DSPTAB 11 each of the DSPTAB's 10 - 0 are checked
twice, If a display is required, bit 15 is reset and its code and command are set into
output channel 10.

If no displays are required the normal 120 msec RUPT is set up and the contents of DSRUPTSW
is checked to identify the pass W.

3-4

Bit 1 2 3 4 5 6 7 8 9 10 11

DSPTAB+llD No Gimbal Tracker Program
Att Lock Warning Caution

I DSPTAB+ 10D I MD1 (5 bit Relay Code) MD2 (right hand character)

DSPTAB+ 9D

ND2 ND1 I3SPTAB-t 8D

VD2 VD1

I DGPTAB+7 I R l D l (left hand character)

DSPTAB+ 6

R1D5 (right hand character) -RlS R1D4 DSPTAB+ 5

R1D3 + R1S R1D2

I DSPTAB+4 I i R 2 S R2D1

DSPTAB+ 3 -R2S R2D3

R3 D l R2D5 DSPTAB+ 2

R2D4
~ ~~ ~ ~ ~~~ ~~~

~

DSPTAB+ 1

R3D5 -R3S R3 D4 DSPTAB

R3 D3 + R3S R3D2
~~~ 

Table 3-1. The 12-Word Display Table Bit Assignments 



A D I S P L A Y  AND 
S U P P L I E S  

I A P P R O P R I A T E  11 B I T  
CODE TO A P P R O P R I A T E  
D S P T A B  

~ ~" 

F I X E D  CODE ' I 
P R O V I D E D  FOR ( R E L A Y  BITS)  
EACH D S P T A B  
FRoM MEMORY 

D S P T A B  l o  

I r r l l - l ~ ~ ~ J ~  1 0 

/ T4RUPT SCANS A N D  

INFORMATION 
C ( D S P T A B )  + CODE A S S E M B L E S  DISPLAY 

C H A N N E L  

D S P T A B  CODE 
IDS WHICH RELAY(S)  
ARE TO B E  E N E R G I Z E D  

. .. . ..." ~ _"." 

-. 

Figure 3-2. DSPTAB Code 

3-6 



Assuming we are  on pass 0, control i s  rerouted to the ALTOVT portion of the T4RUPT 
routine. 

3 . 1 . 2  ALTOUT. This routine is entered every 960 msec or every eighth pass through 
the T4RUPT routine when the contents of DSRUPTSW is equal to zero. The purpose of 
this subroutine is to update the altitude and forward and lateral velocity meters. The 
ALTROUT subroutine uses a portion of the ALTOUT subroutine and also updates the 
forward and lateral velocity meters. The forward and lateral velocity meters are updated 
every 480 msec. 

The computer receives altitude, altitude rate and forward and lateral velocity information 
from the landing radar; this information is used in developing the various display drive 
signals. The altitude display data is transferred into the ALTM output counter and gated 
out to the altitude meter, The forward and lateral velocity display data is transferred 
into the OPTXCMD and OPTYCMD output counters and gated out to their respective 
meters. The actual gating out of information does not begin until output channel 14 
bits 3, 11 and 12 are  se t  to equal 1. Forward and lateral velocity information is applied 
to the RR CDU er ro r  counters where it is converted from digital to analog information. 
The information is then routed to the altitude meter for display, The altitude information 
is gated directly to the altitude meter, the altitude meter converts the information from 
digital to a visual readout. Altitude information can be calculated by multiplying the 
altitude rate by the loop time (. 96 sec) to develop the change in altitude, and by subtracting 
the altitude change from the last altitude, the latest altitude can be generated. 

3 . 1 . 3  ALTROUT. The ALTROUT subroutine is entered every 960 msec or every time 
the contents of the DSRUPTSW is equal to 4. The purpose of this subroutine is to 
update the altitude rate meters display. The ALTROUT subroutine updates the forward 
and lateral velocity meters as well  as the altitude rate meter. 

3 . 1 . 4  RR AUT CHK (RENDEZVOUS RADAR AUTOMATIC CHECK). The T4RUPT 
program does this routine every 480 msec. RRAUTCHK services the RR inbits and 
drives the antenna. Erasable memory location RADMODES is updated to the latest 
RR condition every time the RR inbits change. See table 3-2. 

If the RR AUTO MODE bit of channel 33 changes, a check is made to determine whether 
it just came on o r  just went off. The RR AUTO MODE bit just going off while a program 
is using the radar causes a PROGRAM CAUTION and the failure is displayed in R1 of the 
DSKY. If the RR AUTO MODE bit just came on while no other program was using the 
radar, the RR TURN-ON is initiated by scheduling the RR TURN-ON task. 

The RR TURN-ON task: zeroes the radar CDU channels, sets the computer RR CDU 
counters to zero, sets RADMODES to agree with the antenna angles, and lights the 
TRACKER WARNING lamp if there a re  any tracker fails present. 

The RRCDU CHK is performed if the RR CDU fail bit of channel 30 changes. If the RR is 
in the AUTO mode and the RR CDU FAIL, LR FAIL, or RR DATA FAIL is present, the 
TRACKER WARNING lamp is lit. 

The RRGIMON routine monitors the RR antenna angles and initiates a reposition of the 
antenna is needed (DORREPOS) if the antenna angles exceed their limits specified by the 
particular mode. 

3-7 



The DORREPOS task selects the proper zero reference for the RR antenna mode and 
repositions the antenna to these reference positions. The antenna is driven one axis 
at  a time; trunnion first and then shaft to within 1' of the reference position. The drive 
pulses are  limited to 384 pulses maximum for each CDU load. Every 1/2 second the CDU 
is driven until the particular axis angle is within one degree of the zero reference posi- 
tion. After driving the antenna to the zero reference position a check is made for the 
designate request. If the designate request is present, a check is made for a remode 
request and if not present, the START DES routine is performed. 

The START DES routine schedules the job DODES every 1/2 second and monitors the 
amount of time required to achieve lock-on. If more than 30 seconds is required, the job 
is terminated and the PROGRAM CAUTION lamp is lit along with a display of the failure 
in R 1  of the DSKY. 

The job DODES calculates the shaft and trunnion Le  angles to the desired target, scales 
the A0 angles, develops and limits the necessary drive commands to a maximum of 384 
pulses and terminates DODES when the antenna is within . 7 O  of the desired angle. 

If a REMODE request is present after a reposition, the antenna is driven as  follows: 
(1) trunnion to 00 or  1800 (mode 1 or 2), (2) shaft to -450, and (3) then trunnion to -120° 
or  -600 (mode 1 or  mode 2). 

3 . 1 . 5  IMU MONITOR, This portion of the T4RUPT program is entered every 480 
msec when the contents of DSRUPTSW = 2 or 6. The purpose of this subroutine is to pro- 
cess changes in the status of the IMU and its associated moding or  failures. See tables 
3-3 and 3-4. Upon entering IMU monitor, channel 30 bits 9, 11 - 15 are  checked to see if  
any bits changed. This is done by comparing c(1MODES 30 bits 9, 11 - 15) with channel30 
bits 9, 11 - 15. IMODES 30 contaihs the last configuration of channel 30 and i f  any bit 
changed the appropriate action is initiated. The bits are  scanned from 15 - 9 in order. 

If any bit changed, IMODES 30 is updated to reflect latest change and the appropriate 
action is initiated. 

If bit 15 changed, the IMU temperature status changed and a check is made to see if the 
temperature just went in limits or  out of limits. If i t  went out of limits, the TEMP 
CAUTION lamp is lit. If the temperature just went in limits, the TEMP CAUTION lamp 
is turned off if lamp test is not in progress. After servicing bit 15 a check is made of bit 
14. 

If bit 14 changed, it means that there has been a change in the TURN-ON REQUEST 
discrete associated with ISS TURN-ON. Jf the request just came on and there is not a fail 
bit present, a flag is set to indicate first sample and nothing is done until the second 
sample. If the request just went off and the 90 second delay was not completed, a fail 
flag is se t  and the PROGRAM CAUTION lamp is lit and the failure indicated. 

If bit 13 or  12 changed either the IMU or  the CDU FAIL status changed, If the failure 
waa not inhibited, the ISS WARNING lamp is lit. If the failure was inhibited and lamp 
test was not in process, the ISS WARNING lamp is turned off if on. 

If bit 10 changed (the caging indication), a check is made to determine whether i t  came on 
o r  off. Jf it came on, all ISS driving is terminated, the NO ATTITUDE lamp is lit, and 
PIPA, ICDU and IMU failure inhibit bits of IMODES 30 are set. If the caging indication 
was just removed, the next channel 30 bit is checked. 

3-8 



If bit 9 (IMUOPERATE) changed, a check is made to determine if it just came on, If it 
is just on and no turn on request fail present, the first sample bit is set. If bit 9 was just 
removed and a program was using the IMU, the PROGRAM CAUTION lamp is lit and the 
failure displayed in R1. 

After servicing the channel 30 bits, the turn on test is entered. If the first turn on 
sample bit is present, the second turn on sample bit is set  and the next time through T4 
the turn on test will be completed. Assume that the second sample bit has been set  and 
we enter turn,on test. The turn on sample bits are  reset and if  the turn on request and 
IMU operate bits are  present turn on is initiated. The coarse align, zero ICDU discretes 
are  issued, the NO ATTITUDE lamp is lit, the IMU failure inhibit bits are  set and a 
90 second time delay is initiated. After 90 seconds the ENDTNON task is initiated. 
If the turn on request bit had been present and no IMU operate present, the PROGRAM 
CAUTION lamp is lit and the failure displayed in R1. If the TURN ON REQUEST bit is 
not present and coarse align not present and no program using IMU, the IMU fail inhibit 
bits are set, zero ICDU is issued and the UNZZ task is scheduled for 300 msec. The 
normal exit from the turn on test is to the channel 33 test (C33 TEST). After 300 msec, 
the task UNZZ is performed which removes coarse align and zero ICDU discretes, and 
after a delay of 4 seconds removes ICDU and M U  failure inhibits, and checks for these 
failures. If either is present, the ISS WARNING lamp is lit. If neither is present, the 
ISS WARNING lamp is turned off if on and not in lamp test. The ISS turn on delay com- 
plete discrete is removed and task PFAIL OK is scheduled for 10 msec. A f t e r  10 msec 
the PIPA FAIL bits are  RESET and the caging indications are  reset. If any uninhibited 
failures are  present, the ISS WARNING lamp is turned on. 

The C33 test monitors channel 33 bits 13 - 11 for failure indications. If no bits changed 
the GLOCKMON check is made. 

e 
If bit 13 (PIPA FAIL) changed, IMODES 33 is updated to reflect the latest and if any 
uninhibited failures are  present, the ISS WARNING lamp is lit. If a PIPA FAIL and 
its inhibit bit a re  present with the IMU in operate after initialization, the PROGRAM 
CAUTION lamp is lit and the failure displayed. 

If bit 12 changed, the PROGRAM CAUTION lamp is lit, if bit 12 just came on and the 
failure (downlink too fast) is displayed in R1. 

If bit 11 changed, the PROGRAM CAUTION lamp is lit if bit 11 just came on and the 
failure (uplink too fast) is displayed in R1. 

After servicing channel 33 the gimbal lock monitor routine is initiated (GLOCKMON). 
The GLOCKMON routine monitors the middle gimbal angle. If the angle is > 70°,  the 
gimbal lock lamp is lit. If the middle gimbal angle is > 850 and the ISS is not in coarse 
align; the coarse align discrete is issued, the NO ATTITUDE lamp is lit and the 
IMUFAIL INHIBIT bit is set. 

If the gimbal angle I s  700, the GIMBAL LOCK lamp is turned off if not in lamp test. 

3-9 



0 120 MSEC 

AND SET O/PCH10 - 0 

30 MSEC 

SET T4LOC FOR SET T4LOC FOR 
NORMAL T4RUPT NORMAL T4RUPT 

UPDATE LMP OUTPUT 
POINTER (LMPOUT SCHEDULE 100 MSEC 
AND LMPOUTTI T4RUPT 

SCHEDULE 90 MSEC DECREMENT SET DSRUPTSW 
T4RUPT DSRUPTSW 

SET T4LOC FOR 
LMP CMD 

RELAY CODE INTO 
SET LMP CMD AND 

O/PCH10 (7uoEx)  

I SET LMPOUTT 

DECREMENT 
LMPOUTT 

L 

L SCHEDULE A 30 MSEC 
T4RUPT 

Figure 3-3. Detailed T4RUPT (Sheet 1 of 28) 

*3-10 



0 CDRIVE 

. NO 
+ o r  + O  DSPTAB+llD 

YES - 

NO , 
SET BIT 15 OF 
D S P T A B + l l D  = 0 

BITS OF DSPTAB+l lD  
LOAD LOW ORDER 11 

AND RELAY CODE INTO 
O/PCHlO 

DECREMENTNOUTAND 
S E T  DSRUPTEM = -0 

b 
- 

w 
SCAN DSPTABS+~OD 

DSPTAB (STARTING COMPLEMENT THE 
WITH THE LAST DSPTAB APPROPRIATE 
SERVICED) DSPTAB AND LOAD 

SET T4LOC FOR 
A DSKY RELAY CMD 

THE LOW 11 BITS AND 
T H E R E L A Y C O D E  
INTO O / C  CWlO SCHEDULE A 20 MSEC 

T4RUPT 

ANY DSPTAB 

S E T  C(DSRUPTEM) 

+ 

I 1 SET C(N0UT) = +O 

SCHEDULE A 120 MSEC 
T l R U P T  

I J 

CHECK C(DSRUPTSW) 
TO DETERMINE WHICH 

PASS THROUGH T4 

Figure 3-3. Detailed T4RUPT (Sheet 2 of 28) 

3-11 



S E T  BIT 8 O F  O / P  
CH 12 (DID) 

* 

SCHEDULE " INTLZE" 
ON WAITLIST FOR 
60 MSEC 

I 

0 INTLZE 

USE THE PROG FOR 

R E S E T  BITS 2 AND 8 OF 
O / P  CH12 = 0 (RESETS 
R R E R R O R C O U N T E R  
ENABLE AND DID) 

t 

S E T  B I T  2 O F  O / P  
CH 14 = 1 (SELECT 
A L T  RATE) 

DEVELOP OPTXCMD 

AND STORE FORVEL IN 
LASTXCMD 

(FORVEL - LASTCMD) 
~~~~~~~ ~ ~~ 

S E T T O +Q:
1. DID F L G S E T C (ALT RATE)
2. L A S T X CMD INTO ALTM (OUTPUT
3. LAST Y CMD COUNTER FOR M E T E R

DEVELOP OPTYCMD DRIVE)
(LATVEL - LASTYCMD)
AND STORE LATVEL IN
LASTYCMD

SET BITS 3, 11 AND 12
O F O/P CH 14 = 1 (ALT
M E T E R ACT. , DRIVE
OCDU SHAFT AND DRIVE
OCDU TRUNNION)

ALT

THIS A LTOUT
OR ALTROUT? -

= 1 (ENABLE RRCDU
ERROR COUNTER) OVER

Figure 3-3. Detailed T4RUPT (Sheet 3 of 28)

3- 12

Q
.SET BIT 2 OF O/P
CH 14 = 0 (RESET ALT
RATE SELECT)

I t
I

ALTITUDE INFO OR

SET "ALTt = -1
AND OLD VALUE OF
DP "ALT' INTO ALT
SAVE AND ALTSAVE+l

I

UPDATE DP ALT WORD
(MULT ALTRATE BY
LOOP TIME. 96 SEC AND
ADD TO OLD ALT SAVE)

IF THE C(ALTSAVE)
WAS NEGATIVE FORCE
DPALTSAVE WORD = 0

+ IS HIGH ORDER I

ADD BIT 15 TO
ALTSAVE+l 0

PLACE 15 BIT UNSIGNED
C (A LTSAVE + 1) INTO
ALTM (OUTPUT COUNTER)

I

OF O/P CH 14 5 1 (ALT
METER ACT., DRIVE OCDU
SHAFT AND TRUN-

HAS RR AUTO MODE
BIT OF CH 33
CHANGED ? (BIT 2)

NO

UPDATE RADMODES

(WT 2) I TO PRESENT CONFIG.

MODE JUST GO
ON? RADMODES

WAS ANOThdR
V 1 PROGRAM USING RR

~ . . L N IT WENT OFF?

BIT 7) / I (STATE BIT 7)

SET RR TURN-ON AND
RR ZERO BITS OF
RADMODES (BITS 1 AND
13 = 1)

SCHEDULE TASK "RR
TURN-OW' TO BE
EXECUTED IN 10 MSEC

(PROGRAM CAUTION 1

A V05 N31 R 1 = 00514
(RADAR GOES OUT OF)
AUTO MODE WHILE

UPDATE RADMODES TO
REFLECT RRCDU FAIL
(RADM0L)ES BIT 7)

LAMP TEST
IN PROGRESS?

(IMODES 33

TRACKER WARNING

I

I WARNING
TURNOFFTRACKER I I
(DSPTAB+l lD BIT 8 = 0)

I

0 GIMON

Figure 3-3. Detailed T4RUPT (Sheet 6 of 28)

3-15

0 GIMON

OPTY) (RR CDU

SHAFT ANGLE
WITHIN LIMITS?

YES

WITHIN LIMITS?

6 Y E S

TRUN ANGLE NO
WITHIN LIMITS?

)IT 11
= 1 (MONITOR
REPOSITION)

1 kES
I 14 = 0 (DISABLE I

R R C D U E R R C T R A N D
RR AUTO TRACKENABLE)

(-J RR TURN

SET CH 12 BIT 1 = I
(ZERO RRCDU)

I SCHEDULE 20 MSEC
T3 RU P T I

20 MSEC

SET OPTX AND
Y = O

I

SET CH 12 BIT 1 = 0

SCHEDULE 4 SEC
T3RUPT

4 SEC
w

SET RADMODES
BIT 13 = 0

SET RADMODES BIT 12
(RR MODE) .Z 1 OR 0 TO
AGREE WITH PRESENT
ANT POSITION C(0PTY)
IF TRUNNION ANGLE
IS > MOO, BIT 12 - 1

Y El

THERE ANY

I SCHEDULE 1 SEC
T3RUPT (WAIT 1 SEC I

I BEFORE REMOVING R R
TURNON FLAG TO AVOID
A POSSIBLE MONITOR
REPOSITION ALARM I
0 (REMOVE RR TURNON)

TOUSETHE RR?
C(STATE) 6 OVER

I
TRACKER WARNING
(DSPTAB+llD BIT 8 = 1)

~

Figure 3-3. Detailed T4RUPT (Sheet 8 of 28)

3- 17

0 RREPOS

SET CH 12 BIT 2 = 1
(ENABLE RR CDU ERR
C TR)

SET LASTXCMD AND
LASTYCMD = 0

PROGRAM CAUTION

SCHEDULE 20 MSEC
TBRUPT (DELAY)

REPOSITION

2ND PASS (REMODE)

FOR REPOBITION AND
FIRST PA98 OF REMODE REMODE FIRST PASS OR (-180)
OR -120° FOR REMODE -60' FOR REMODE
SECOND PASS SECOND PASS

1 I
- - SET CfRRINDEX) = 0

Figure 3-3. Detailed T4RUPT (Sheet 9 of 28)

3- 18

a Q

a

0

($ (-) NO , YES
ARE REMODE AND
REPOSITION CMDS
PRESENT? (RADMODES

""- "" -1
I
I
I

\BITS 14 AND'W I
f

TERMINATE REPOSITION L , I

I
I
I
I
I
I
I
I
I

(RADMODES BIT 11 - 0) CALC A6 CMD AND
SCALE WITH. 59062 I
(CALC TRUN ON FIRST
PASS AND SHAFT ON
SEC PASS) DIFF BETWEEN
ACTUAL AND ZERO REF.

TRUN

SET C(0PTXCMD) - 0
SHAFT

I I

I

w CONTROL
r

384 PULSES MAX
LIMIT CMDS T O

i

CALC DIFF BETWEEN

DESIRED AND S E T INTO
LASTCMD AND

APPROPRIATE O P T ()
CMD (OUTPUT COUNTER)

SET CH 14 BITS 11 AND
12 - 1 (OCDUX AND Y
DRIVE)

I

I SCHEDULE 1/2 SEC
T3RUPT (RELAY)

I
I
I
I
I
I
I
I
I
I
I
I

L,"""" J
Figure 3-3. Detailed T4RUPT (Sheet 10 of 28)

3-19

? SHAFT

r """""-
I z

BAD REMODE
OR

YES BEG DES IS REPOSITION
REQUEST PRESENT?
(RADMODES BIT 11)

NO

TERMINATE DES
(SET RADMODES BIT
10 = 0)

DECREMENT
DESCOVNT

(RADMODES BIT 7)

SET INTERNAL FLAG
TO INDICATE UNSUC-
CESSFUL JOB

PROGRAM CAUTION

I SCHEDULE 1/2 SEC
TSRUPT (DELAY)

SET CH 12 BITS 2 AND
14 = 0 (REMOVE RR
ECR ENABLE AND RR L"-J

WAKE JOB

REMOVE DESIGNATE

BIT 10)
FLAG (RADMODES

TRUNNION CMDS USING
PRESENT ANT. ANGLES
AND RR TARGETVECTOR
IN N. B. COORDINATES

WITH. 53624
SCALE TRUNNION CMD

I I .53624
SCALE SHAFT CMD WITH

IS CONTINUOUS
DESIGNATES REQ.
PRESENT?

\%ADMODES BIT 15 = 1)/

A
NO

REMOVE R R AUTO TRACK
ENABLE
(CH 12 BIT 2 - 0)

ISSUE RR AUTO TRACK &-, I ENABLE
(CH 12 BIT 14 = 1) I - I I ' I

/ IS MONITOR \
k EPOSITION R EQ.
PRESENT?
(RADMODES BIT 11) Y -
TRUNNION CMDS
LIMIT SHAFT AND

TO 384 MAX.

I CALC DIFF BETWEEN
LAST CMD AND DESIRED
AND LOAD OPTX AND Y I

REMOVE DESIGNATE

I REQUEST
(RADMODES BIT 10 5 0)

CMD COUNTERS I
+

ISSUE SHAFT AND TRUN-
NION CDU DRIVE
(CH 14 BITS 11 AND 12-1)

REMOVE RRCDL' ERROR
COUNTER ENABLE
(CH 12 BIT 2 - 0)

Figure 3-3. Detailed T4RUPT (Sheet 13 of 28)

3-22

I COMPARE IMODES 30,
BITS 9, and 11 THRU
15 WITH CHANNEL 30

UPDATE IMODES 30 TO
NEW CHANNEL 30 CON-
FIGURATION & SAVE

17614-3

I YES

IS A LAMP NO
TEST IN PROCESS?

(IMODES 33, BIT 1 = 1)

I

YES I 1

NO
WITHIN LIMITS ?
(CH30, BIT 15 = 0)

TEMP CAUTION
(CH11, BIT 4 = 1)

I TURN OFF TEMP
CAUTION LAMP. (SET
CH11, BIT 4 = 0)

1
L

DID ANY OTHER
BITS CHANGE ?

(IMODES 30, BITS 9
AND 11 THRU 14.)

Figure 3-3. Detailed T4RUPT (Sheet 15 of 28)

3-24

I7614 -4

I8 TURN *ON RE-)
QUESI’ FAIL

PRESENT ?
(IMODES 30,

BIT 2 = I)

YES

*

0 VU5 N31
R1 .- 00207

SS TURN ON RlsQUEST
NOT PRESEN’I’ FOR

90 SF4(’)

DID ANY OTHER
BITS CllANGE Y

(IMODES 30, BITS 9
AND 11 THRU 13)

17614-5

Figure 3-3. Detailed T4RUPT (Sheet 16 of 28)

3-25

AND IMU FAIL I T B
(IMODEII 30, BITtl 10,

TllEIR I N l P l T BITS
12 , AND 13) WIT11

(IMODES 30, DITd I ,

fs8 WARNING
(CHl1, BIT 1 7 1)

TURN OFF ISE WARN-

BIT I = U)
I N 0 LAMP (SET CH11,

P
I

(&)NO ' (IM01)ES DID ANY 30, OTIlEll BI'CY 0 TEST ,NO(-) DID DIT9 ANY CHANGE OTHER ?

9, 1 1 , AND 12
(IMOOES 30, BITS

9 AND 11)

6
17614-6

ARE WE CAGING?
(IMODES 30, BIT

11 = 0)

TERMINATE GYRO AND
ICDU DRIVING. (SET
CH14, BITS 10, 13,14,
AND 15 = 0)

A
REMOVE IMU ERROR
CNTR ENABLE AND
ISS TURN ON DELAY
COMPLETED. (SET
CH12, BITS 6 AND
15 = 0)

ISSUE COARSE ALIGN
ENABLE AND ZERO
IMU CDUS. (SET CH12,
BITS 4 AND 5 = 1)

NO ATTITUDE

INHIBIT PIPA, ICDU,
AND IMU FAILURES AND
INDICATE CAGING
(SET IMODES 30, BITS

SET CDU (X, Y , AND Z)
& GYRO CMD OUTPUT
REGISTERS = 0

*

DE-SELECT GYROS
(SET CH14, BITS 7 , 8

17614-7

Figure 3-3. Detailed T4RUPT (Sheet 18 of 28)

3-27

Q
WAS A PROGRAM

USING THE IMU
WHEN TURNED OFF? .c 1 - (STATE, BIT 8 = 1)

REQUEST FAIL PRE-
SENT? (IMODES 30, BIT

IS TURN ON

2 = 1)

SET FIRST TURN ON I SAMPLE (IMODES 30,

(PROGRAM,CAUTION)

BIT 7 = 1)-

L

A

17614 -8

Figure 3-3, Detailed TBRUPT (Sheet 19 Of 28)

3-28

IS FIRST
TURN ON SAMPLE SET SECOND TURN ON

PRESENT ? (IMODE SAMPLE BIT (SET
IMODES 30, BIT 8 = 1) 30, BIT 7 = 11

RESET TC%N ON
SAMPLE BITS (SET
IMODES 30, BITS 7
AND 8 = 0) -

I
YES

IS COARSE
ALIGN ENABLE

PRESEST? (CH12,
BIT 4 = 1)

IS TYRN ON

AXlODES 30, BIT

\ /
(IS PRESEST? nrr O,PEIUTE (IMODES 3

30, BIT 9 = 0)

*
0 PROGR4M CALTION

14 = 0)

S

REAIOVE "IhlT E M O R
CSTR ESABLE" .4SD
"ISS TYRS OX DELAS

I COI\IPI.ETED. "ISET
CH12, BITS 6 AKD 153.0)

ISSUE "COARSE ALIGK
ENABLE" A?;D "ZERO
IMU CDUS. '' (SET CH12,
BITS 4 ASD 5 = 1)

NO ATTITUDE

INHIBIT PIPA, ICDL!, AND
M U FAILURES AND MDI-
CATE INITLALIZATION
(SET MODES 30, BITS 1
AKD 3 TITROUGH 6 = 1)

IS ANOTHER
PROGRA hl USIXG

THE IXIU? (STATE,
BIT e = 1)

ISHIBIT PIPA. ICDC,
.4KD 1 3 C FAILURES
AKD I?;DICATE CAGING.
(SET IMODES 30. BITS
1 AXD 3 THRP 6 = 1,)

I 1
I ISSUE "ZERO IAW CDUS"
(SET CH12, BIT 5 = 1) 1

I I
t
SCHEDULE TASK "UNi2"
TO BE EXECUTED IN 30C
hISEC.

SCHEDULE TASK
l~ENDTFiON" TO BE
EXECUTED IN 90 SEC.

,

SET CDU X, Y AND 2 '
GIMBAL ANGLE
COUNTER3 = 0

REMOVE 'COARSE ALIGN
ENABLE" AND "ZERO
IMU CDUS". SET CH12,
B I T S 4 A N D 5 t O

SCHEDULE A 4 SEC DE-
LAY FOR COUNTERS TO
STABILIZE

I I 4 SEC

REMOVE ICDU A N D IMU
FAIL INHIBITS A N D
IMTIALIZATION INDICA-
TION. (SET IMODES 30,
BITS 3 , 4 , AND 6 = 0)

COMPARE PIPA, ICDU
AND IMU FAIL BITS
(IMODES 30, BITS 10,
12, AND 13) WITH
THEIR INHIBIT BITS
(IMODES 30, BITS 1 ,
3 AND 4)

IS A LAMP
TEST IN PROCESS ?

OMODES 33, BIT 1 = 1)
\ /

TURN OFF ISS WARN-
ING LAMP (SET CH11,
BIT 1 = 0)

REMOVE "ISS TVRN OX
DELAY COMPLETED".
(SET C H l 2 . BIT 15 = 0)

*

SCHEDULE TASK
'' PFAILOK" TO BE
EXECUTED IN 10 SEC -

I
A

3
IS ANOTHER

TO USE IMU?
(STATE BIT 9 * 1) 6 TASK

17614-1 I

Figure 3-3. Detailed T4RUPT (Sheet 21 of 28)

3-30

QUEST FAlL'(8ET
RESET TURN ON RE-

IYODES 30 , BIT a = O)
Q

NO

I3 TURN ON IS ANOTHER
REQUEST PRESENT PROGRAM WAlTMO

(IMODES 30, TO USE IMU? DELAY SUCCESSFUL?
(OLD IMODES 30. BIT 14 = 0) (STATE, BIT 8 = 1)

YES

TURN OFF "NO RESCHEDULE TASK
ATTITUDE" "ENDTNON" TO DE
INDICATOR EXECUTED M 00 SEC

> J & b I

YES IS I59
4 WARNING I A M P

ON7 (CH11, BIT 1 - 1)

w 4

SET INTERNAL FLAG
"0 INDICATE BAD
MOUE SWITCH . SET INTERNAL FLAG TO

INDICArE GOOD MODE
SWITCH

i

b

Y ES
CALLING JOB

SLEEPING?

I WAKE SLEEPING JOB I I No

17614-10

Figure 3-3. Detailed T4RUPT (Sheet 22 of 28)

3-3 1

0 PFAILOK

REMOVE PIPA FAIL
INDICATIONS
(IMODES 30 BIT 10
AND IMODES 33 BIT
13 = 1) -1

REMOVE CAGING
INDICATION
(IMODES 30
BIT 5 = 0)

.
INSURE ISS WARNING
IS O F F
(SET CH 11 BIT 1 = 0)

b

L

Figure 3-3. Detailed T4RUPT (Sheet 23 of 28)

3-32

COMPARE IMODES 33,
BITS 11, 12 AND 13
WITH CIMNNEL 33.

NEW C1fANNEL 33 CON-
UI’DATE IMODES 33 TO

FIGURATION

17614 -13

Figure 3-3. Detailed TCRUPT (Sheet 24 of 28)

3-33

r I / I 1

I UPDATE RPA FAIL IN IS PIPA FAIL } YES 4
IMODES 30 (SET IMOIWS

UPDATE PIPA FAIL

30, BIT 10 = 1) 13 2 0) IMODES 30, BIT 10 = 0)
ON ? (IMODES 33, BIT IN IMODES 30 (SET

1 J I J

4 I
v

COMPARE PIPA, ICDU
ANDIMU FAIL DITS
(IhIODES 30, DI'I'S LO,

INIUDIT BITS. (MODES
30, BI'I'S 1, 3 AND 4)

12 AND 13) WTII THEIR

UNTNHIHITEU
YES

ISS WARNING
(C H I I , BIT 1 = 1)

/ I

IS 'TIIERE A IS IMU
OI'EItA'IlNG7
(IMODES 30.

BIT 9 = 0)

N O

INl'IYAI,IZk~D?
(IMODES 30, BITS
5 , 6 , 7 , OH 8 ~ I)

0 PROGRAM CAUTION

VU5 N31

(PIPA FAII. BUT PIPA
HI = 00212

I I

17614-14

Figure 3-3. Detailed T4RUPT (Sheet 25 of 28)

3-34

Y
NO /-\ TELEMETRY TOO

FAST? (IMODES 33
BIT 12 = 0)

I I YES

PROGRAM CAUTION

R1 = 01105
(D O W N L I N K TOO

TELEMETRY TOO
FAST? (IMODES 33,

BIT 11 = 0)

& GLOCK

I YES

PROGRAM CAUTION

R1 = 01106
(UPLINK TOO FAST)

I
1

DID THE OTHER

33, BIT 11)
BIT CHANGE? (IMODES 0 GLOCK

17614- I5

Figure 3-3. Detailed T4RUPT (Sheet 26 of 28)

3-35

IS GIMBAL
YES LOCK LAMP Oh' ?

(DSPTAB l l D , BIT
6 = 1)

dNO IT >70° I
I TES

A U G N ENABLE

I

("TAE?TT
PROGRESS ? ("ODES

30, BIT 1 = 1)

NO

:S

lNO
ISSUE "COARSE ALIGN
ENABLE" (SET CH 12,
B I T 4 = 1)

TURX OFF GIMBAL
LOCK LAMP (SET
DSPTABllD, BIT 6 = 0)

I / IS GIMBAL \ V F P I

I INHIBIT IMU FAIL
(SET IMODES 30 BIT 4 = 1) I

J

I

I

+"-------

I \ BIT 6 = 1) / I

c"
ARE WE
IKTTIAUZING?
(MODES 30,
BIT 6 - 1)

G GIMBAL LOCK

1

f i
RESUME

17614-16

Figure 3-3. Detailed T4RUPT (Sheet 27 of 28)

3-36

0 MATRIX

CALCULATE THE TERMS FOR THE
GIMBAL TO PILOT (GP) AND THE
PILOT TO GIMBAL (PG) MATRIX.
CALCULATE:

1.
2.
3.
4.
5.
6.
7.
8.

SIN (MG\
COS (MG)
SIN (OG)
-SIN (OG) COS (MG)
-SIN (O G) / COS (MG)
COS (OG)
COS (OG) COS (MG)
COS (OG) / COS (MG)

Figure 3-3. Detailed T4RUPT (Sheet 28 of 28)

3-37

a

BIT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

CHANNEL 30
~~~ ~ 

DESCRIPTION 

RR CDU FAIL 

Table 3-2. RADMODES - Channel Correlation 

RADMODES CIANNEL 33 

DESCRIPTION 

RR TURN-ON 
RR AUTO MODE 
RR HI SCALE 
RR DATA 
LR POSITION DATA 
LR ANT. POSITION # 2 
RR CDU FAIL 
LR VEL DATA FAIL 
LR KI SCALE 
DESIGNATE 
MONITOR REPOSITION 
RR MODE (ANT) 
RR ZERO 
REMODE 
CONTINUOUS DESIGNATE 

DESCRIPTION 

RR POWER ON/AUTO 
RR RANGE LOW SCALE 
RR DATA GOOD 
LR DATA GOOD 
LR ANT. POSITION # 1 

LR VEL DATA GOOD 
LR RANGE LOW SCALE 

MARK STAT 



Table 3-3. IMODES 30 - Channel 30 Correlation 

- 
Bit 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 

12 

13 

14 

15 

- 

- 

IMODES 30 

Description 
PIPA FAIL INHIBIT (ISS WARNING) 
TURN ON REQUEST FAIL 
ICDU FAIL INHIBIT 
IMU FAIL INHIBIT 
PIPA FAIL INHIBIT (PROG. CAUTION) 
IMU BEING INITIALIZED 
ISS INITIALIZATION REQUEST 
ISS INITIALIZATION WAIT 1 SAMPLE 
IMU OPERATING 
PIPA FAIL 
IMU CAGE 
ICDU FAIL 
IMU FAIL 
ISS TURN ON REQUEST 
ISS TEMP IN LIMITS 

r 
Bit 

9 

11 

12 

13 
14 

15 

Description 

IMU OPERATE 

IMU CAGE 

ICDU FAIL 
IMU FAIL 
ISS TURN Oh' REQUEST 
ISS TEMP IN LIMITS 

Table 3-4. IMODES 33 - Channel 33 Correlation 

IMODES 33 I Channel 33 (Inverted Logic) I 
Bit Bit Description 

1 
GYRO SCALE FACTOR TEST 2 
LAMP TEST IN PROGRESS 

11 

13 PIPA FAIL 13 

12 DOWNLINK TOO FAST 12 

11 UPLINK TOO FAST 

Description 

UPLINK TOO FAST 
DOWNLINK TOO FAST 
PIPA FAIL 

3-39 



3 .2  DOWNTELEMETRY ROUTINE (DNRUPT) 

The Downtelemetry Program is used to select the appropriate computer words to be trans- 
mitted via the Downlink Telemetry System and setting the selected words into channels 34 
and 35. 

The overall synchronization of the downlink is obtained from the external telemetry pro- 
grammer. In order to understand the sequence of events occurring during this program, 
one must know terminology and control pulse rates. The following is a synopsis of terms 
and data required for a discussion of this program: 

Telemetry Word = 8 bits 
Two telemetry words = 1 computer word 
1 Prime Frame = 128 telmetry words 
5 Telemetry Words = 1 DP Computer Data Word 

*BIT RATE = 51.2  KC or  1 . 6  KC 

*TL START PULSE = 50 pps or 10 pps 

*TL END = 50 pps or 10 pps 
*NOTE: The two rates given are basic rates, the lower of which is 

used to transmit data when the spacecraft is located a con- 
siderable distance from the ground tracking station. Our 
discussion will  be based on the higher of the two rates. 

The telemetry system transmits data to the ground at the rate of 50 frames per sec. 
A frame consists of 128 eight bit telemetry words, five of which are  allotted for computer 
data. Thus, every 20 msec computer data is sent out (figure 3-4). At the high rate 50 D P  
computer words a re  transmitted each second, with some single precision words grouped 
together and sent two at a time as double precision pairs, 

If one considers the five telemetry words (figure 3-5) to be repeated 50 times per second 
and each transmission to contain different data, one would have a picture of what the down 
telemetry program must accomplish. A general format is shown in figure 3-6. 

The nominal downlink list for Sunburst, Rev 14 is provided as  figure 3-7. 

The downrupt flow diagram is shown in figure 3-8. The arrival of the TELEND pulse 
will cause the program interrupt service to route control of the computer to the DNRUPT 
routine. Each pass through the DNRUPT routine will load output channels 34 and 35 with 
the next two words to be outputed via the telemetry system. These two words will picked 
from these channels upon occurrence of the next TELSTART pulse. The FRESHSTART/ 
RESTART routine initializes the contents of DNTMGOTO to the starting address of DNPHASE 
1 so that the first TELEND pulse will cause a DNRUPT which will transfer the control of the 
computer to the routine defined as DNPHASE 1. 

3-40 



BIT RATE 
61.2 KC 

1 . 6  KC 

120 5 12 0 3 5 
WORDS WORDS WORDS WORDS WORDS WORDS 

i t- 1 FRAME 
128 WORDS 

20 MSEC/FRAME -i 
17561 

The arrival of the TLEND pulse forces a DNRUPT which transfers control to the 
DODOWNTM program. This program loads the next double-precision data scheduled to be 
sent down into channels 34 and 35, and sets bit 7 of channel 13 (Word Order Bit) to a ZERO 
for transmission of the other 49 D P  words of the 50 DP word format. Channel 13, bit 7 ,  
controls the logical state of the leading bit (word order bit) in each 40 bit transmission so 
that the first 40 bit word transmitted is distinct from the remaining 49. Bits 2-33 consist 
of the contents of channels 34 and 35; bits 34-40 are  all zeros. a 

Figure 3-4. Computer Interface with Telemetry 

3-41 



Note: Time is increasing to the left nnd that the computer words 
are outputted serially from high to loiv order bit position. 

SERIAL OUTPUT - 
TELEMETRY TELEMETRY TELEMETRY TELEMETRY TELEMETRY 

WORD 5 WORD 4 WORD 3 WORD 2 WORD 1 

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1  

ALL ZEROS CHANNEL 35 1 CHANNEL 34 J 

CHANNEL 13 - 

Figure 3-5. Downtelemetry Transfer 



WORD #1 

2 

'I 
39 
40- 
41 
42 
43 
44 
45 
46 

48 
49 
50 

47 - 

- 

LAST 7 BITS 

0000000 

0000000 

0000000 

0000000 

CHANNEL 35 

00437, 

3810 COMPUTER 
WORDS DEFINED 
BY DATA LIST 

DSPTAB+l 
DSPTAB+3 
DSPTAB +5 
DSPTAB +7 
DSPTAB +9 
DSPTAB+llD 
TIME 1 
CHANNEL 12 
CHANNEL 14 
CHANNEL 31 
CHANNEL 33 
R E P E A T  

CHANNEL 34 
LIST START 

ooooo ( ADDRESS 

3810 COMPUTER 
WORDS DEFINED 
BY DATA LIST 

DSPTAB 
DSPTAB+2 
DSPTAB+4 
DSPTAB +6 
DSPTAB+8 
DSPTAB+lOD 
TIME 2 
CHANNEL 11 
CHANNEL 13 
CHANNEL 30 
CHANNEL 32 

WORD 
ORDER 

BIT 
~- 

0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Figure 3-6. Downtelemetry General Computer Format 

3-43 



DNPHS 1 1 
2 

DNPHS X AND 3 
DNPHS 2 FROM 
SNAPSHOT BUFFER 4 

5 

6 

7 

8 
9 

10 

11 
12 

13 

DNPHS 3 14 
15 

16 

17 

18 
19 
20 

21 
22 

23 

24 
25 

CHANNEL 34 CHANNEL 35 , 

ooooo (LIST ADDRESS) 004378 
PIPA X 

XYMARK MARKSTAT 
DELVX THETAD+ 2 

THETAD+ 1 THETAD 

TANG+ 1 TANG 
LASTXCMD LASTYCMD 
LMP CMD +1 LMPCMD 
FA I LR EG REDOCTR 

STATE+ 3 STATE+ 2 

STATE + 1 STATE 

OPT X OPT Y 

OPT Y CDU Z 
CDU Y CDU X 

LATVEL FOHVEL 

FINALT+ 1 FINA LT 
ALTSAVE + 1 A LTSAVE 

FMALT ALTRATE 

A L T + I  A LT ' 

TIMEHOLDc 1 TIMEHOLD 
OPTWOLD+ 1 OPTYHOLD 

SAMPISUM+ 1 SAM PLSUM 

DESCOUNT OLDATAGD 

SAM P LIM RADMODES 

RHCP PIPA Z 
PIPA Y 

L 

. 

, 

- 
1 

I 



DNPHS 3 (cont) 

CHANNEL 34 CHANNEL 35 

26 

T ti LOC UPLOCK 39 

DATA PL+7 DATA PL+6 38 

DATA PL+5 DATA PL+4 37 

DATA PL+3 DATA PL+2 36 

DATA PL+1 DATA PL 35 

VLAUN+ 5 VLAUN+4 34 
VLAUN + 1 VLAUN 33 
ANG X +  1 ANC X 32 

ANG Y +  1 ANG Y 31 
ANG Z + l  ANG Z 30 
INT Y+l I N T Y  29 
DRIFT T+ 1 DRIFT T 28 

DRIFT I+ 1 DRIFT I 27 
DRIFT O +  1 DRIFT 0 

DNPHS 4 40 

DSPTAB+5 DSPTAB +4 42 
DSPTAB+3 DSPTAB +2 4 1 
DSPTAB+l DSPTAB 

TIME 1 TIME 2 46 

DSPTAB+11 DSPTAB +10D 45 

DSPTAB +9 DSPTAB+BD 44 
DSPTAB +7 DSPTAB+6 43 

- 
w 

DNPHS 5 47 

c(CHAN 33) c(CHAN 32) 50 
c(CHAN 31) c(CHAN 30) 49 
c(CHAN 14) c(CHAN 13) 48 
c(CHAN 12) c(CHAN 11) 

Figure 3-7. Nominal Downlink List, Sunburst, Rev 14 (Sheet 2 of 2) 

3-45 



n [ DNRUPT ) TELEND PULSE EVERY 20 MSEC 

CONTENTS O F  

n 
DNPHASE ii DNPHASE 

OBTAIN LIST 
START ADDRESS 

< 

. 
PUT LOW ORDER 10 
ADDRESS BITS IN 
CHAN 34 & ZERO 
REMAINING BITS 

* 

SET BIT 7 CHANNEL 
13 = 0 (WORD ORDER 
BIT) - 

SET DNTMGOTO TO 
DNPHASE 2 FOR NEXT 
PASS . 

PUT 00437 IN  CHANNEL^ I 

SET BIT 7 CHANNEL 
13 = 1 
(WORD ORDER BIT) 

SNAPSHOT 118 
DP WORDS (3  
THRU 1310, FIG 

IN DNTMBUFF 
THRU 
DNTMBUFF +21 

3-7 ) AND STORE 

SET TMINDEX = 1110 
(138) 

cc 
SET DNTMGOTO TO 
DNPHASE X FOR 
NEXT PASS 

~ ~ ~~~ ~ 

PUT 2ND D P  WORD 

CHAN 34 AND 35 
(LOW ORDER IN 35) 

(FIGURE 3-7) IN 

@ 17567-1 

Figure 3-8. Downrupt (Sheet 1 of 2)  

3-46 



Figure 3-8. Downrupt (Sheet 2 c i  2) 

3-47 



DNPHASE 1 - DNPHASE 1 will  set the ID word into channels 34 and 35. This ID word is 
composed of the downlink list starting address in channel 34 and octal 00437 in channel 35. 
DNPHASE 1 will also set the word order bit to zero to indicate that the word in channels 34 
and 35 is the ID word. DNTMGOTO is set up S O  that the next DNRUPT wil l  transfer control 
to DNPHASE 2. 

DNPHASE 2 - DNPHASE 2 sets the word order bit to 1 to indicate that the contents of 
channels 34 and 35 is ID WORD. DNTMGOTO is set to route computer control to DNPHASE X 
on the next DNRUPT. DP words 3 through 13 a r e  obtained and stored in buffer registers and 
DP word 2 is inserted into channels 34 and 35. The words stored in the buffer will be loaded 
into channels 34 and 35 by the next eleven DNRUPT routines. They are  sampled and stored 
at this time so that when interpreted on the ground they can be compared to each other with 
reference to the same time frame. 

DNPHASE X - DNPHASE X merely obtains the next sequential snapshot word and puts it in 
channels 34 and 35 to be plucked upon receipt of the next TELSTART pulse. 

DNPHASE 3 - DNPHASE 3 sets  up DNTMGOTO for DNPHASE 4 on the next DNRUPT and 
sets  the first DP DSPTAB word in channels 34 and 35. 

DNPHASE 4 - DNPHASE 4 sets the remaining DSPTABS, TIME 2 ,  and TIME 1 and channels 
11 and 12 into channels 34 and 35. 

DNPHASE 5 - DNPHASE 5 sets  the remaining words of the downlink list into channels 34 
and 35 i n  the following order: channels 13 and 14; channels 30 and 31; and channels 32 and 
33. The next entry into DNPHASE 5 will route control of the computer to DNPHASE 1 to 
begin the second transmission of the downlink list. 

3 . 3  KEYBOARD AND UPLINK TELEMETRY INPUT PROCESSING PROGRAM 

The keyboard and uplink telemetry processing program includes the KEYRUPT routine, the 
UPRUPT routine and the routines of the PINBALL program. The KEYRLTPT and UPRUPT 
routines accept the input keycodes from the keyboard and uplink telemetry system. The 
PINBALL program assebles the accepted inputs into meaningful information and controls 
the execution of that which is indicated by the assembled information. Besides performing 
the functions mentioned above, the PINBALL program can be used by internal programs to 
perform the various functions which can be performed through keyboard o r  uplink inputs. 

The KEYRUPT and UPRUPT routines operate under control of the program interrupt circuit- 
ry  of the computer and the processing specified by them is initiated whenever the appropriate 
input is present, The PINBALL program is executed under control of the Executive program 
and is scheduled by the KEYRUPT or UPRUPT routines to process the keycodes that they 
accept. When an internal program uses the PINBALL program, i t  is processed under the 
scheduling of the internal proqram using one or  more of its routines. 

Basically, the PINBALL program is made up of a group of routines with a routine for each 
of the types of keys on the DSKY's. There is a NUM, NOUN, VERB, CLEAR, SIGN, 
ERROR RESET, KEYRELEASE, and an ENTER routine. In addition to these routines, there 
a re  numerous other routines which control is transferred to by the ENTER routine which 
perform the requested action. 

3-48 



Figure 3-9 is a general flow diagram for the PINBALL program and the related KEYRUPT 
and UPRUPT routines. Inputs a re  accepted by the KEYRUPT routine from the computers 
DSKY o r  by the UPRUPT routine from a ground based keyboard via the uplink telemetry 
system. Both of these routines accept the keycode input and schedule the CHARIN (CHARAC- 
TER INPUT) routine of the PINBALL program to be executed through the Executive routine. 

Because of the relatively high priority assigned to the Job CHARIN, the processsing of the 
input keycode begins quickly. CHARIN routes control to the proper routine depending on the 
keycode input. If the NOUN key is depressed, control is routed to the NOUN routine, etc. 
After the processing required for a keycode input is completed, control is routed to the 
Executive End Job routine to terminate the PINBALL program. When another key is de- 
pressed, the KEYRUPT or UPRUPT routine schedules CHARIN which routes control to the 
proper routine, the processing is performed and the PINBALL job is terminated. This 
sequence continues until the required information has been loaded. When the final ENTER 
key is depressed, this sequence occurs again except that the ENTER routine routes control 
to another routine which performs the specified action. When the processing required is 
completed, control is routed to the Executive End of Job routine. 

The internal programs of the computer supply the appropriate information to the ENTER 
routine and can thereby utilize any of the routines which are  used a s  a result of keyboard o r  
uplink inputs. Prior to transferring control to the ENTER routine to utilize one o r  more of 
the routines accessible through the ENTER routine, the internal program must make sure 
that there is not another internal program or  that the astronaut is not using the PINBALL 
program. If the PINBALL program is already in use, control is returned to the internal 
program. What is accomplished then is up to the internal program but, in most cases, 
the internal program is put to sleep until the PINBALL routine is available for its use. 

3 . 3 . 1  DSKY AND UPLINK INTERRUPT OPERATION. The keyboard and uplink 
telemetry interrupt processing program includes the KEYRUPT and the UPRUPT rou- 
tines. These routines process the keycodes which will be used by CHARIN. The KEY- 
RUPT and UPRUPT routines accept the input keycodes from the keyboard and uplink 
telemetry system. PINBALL assembles the accepted inputs into meaningful information 
and controls the execution of that which is indicated by the assembled information. The 
KEYRUPT and UPRUPT routines operate under control of the computer and processing 
specified by them is initiated whenever the appropriate input is present. 

The KEYRUPT and UPRUPT routines accept input keycodes from the DSKY keyboard o r  
from a ground based keyboard, respectively. The KEYRUPT routine obtains the five 
bit keycode from input channel 15 register bits 1 through 5 (MAIN DSKY) or  input channel 
16 bits 1 through 5 (NAV DSKY). The UPRUPT routine obtains the keycode information 
from the INLINK counter of the computer memory. The information obtained from the 
INLINK counter consists of 16 bits of data, shown in figure 3-10, which has been re-  
ceived serially and manipulated into parallel form. Of the 16 bits of information, 15 bits 
a re  used for three copies of the keycode being transmitted. Bits 15 through 11 (high 5) 
and 5 through 1 (low 5 )  contain the keycode, while bits 10  through 6 (middle 5) contain 
the complement of the keycode. The 16th bit is always a binary 1 and is used to indicate, 
through the computer's program interrupt circuitry, that the complete 16 bits of informa- 
tion have been received. 

3-49 



CONDITIOKS NUM 
TOCONVERTNEXT 
FIVE NUMERICAL 

WHAT TYPE OF 
ENTRY HAS BEEN 

BJUTES CONTROL 
MADE, THIS ROUTINE 

To ROUTIh'Is 
WHICH ENABLE 
THE VARIOUS 
ACTIONS To BE 
DONE AS SPECIFIED 
BY THE VERB 

DECIMAL To 

SIGN IN PROPER 
BINARY: DISPLAY 

REGISTER R1, :7 t 
ERROR RESET 

INDICATORS. 
RESETS FAILURE 

TELEMETRY 
UNBLOCK.5 PP 

RELEASF5 DSRY 

c- I. f, L BY VERB 

17513 

W 

Figure 3-9. General Flow Diagram for Pinball 

3-50 



X CAN EQUAL A BINARY 1 OR 0 
BIT 16 ALWAYS IS A BINARY 1 

Figure 3-10. INLINK Word Format 

The flow chart for the KEYRUPT and UPRUPT routines are  shown in figure 3-11. The 
processing performed by the KEYRUPT 1 routine (the KEYRUPT 2 routine is associated 
with mark commands) is presented here. Upon initiation of the KEYRUPT 1 routine, via 
keyboard entry, real time is recorded. This is accomplished by reading and storing the 
following computer memory registers: 

a. TIME 1 COUNTER 

b. TIME 2 COUNTER 

These quantities are  recorded in case the KEYRUPT 1 was initiated by Noun 65 (Sampled 
Time) and are  recorded immediately to obtain the magnitudes as  close to the time of the 

. entry as  possible. 

The Executive's NOVAC subroutine is used to schedule the Job CHARIN. After CHARIN 
is scheduled, the keycode is stored in MPAC of the core set  area reservied for CHARIN 
by NOVAC. This concludes the KEYRUPT routine and control is returned to the job 
which was interrupted by the KEYRUPT routine. 

Whenever the UPLINK routine is initiated, real time is recorded. This is accomplished 
by reading and storing the contents of the TIME 2 and TIME 1 counters, These quantities 
a r e  recorded in case the UPRUPT was initiated by Noun 65 for the same reason it was 
during KEYRUPT. 

A 16 bit uplink word, which has been assembled in the computer's INLINK counter, is 
read from the counter and the counter is set  to + O  in preparation for the receipt of the 
next uplink transmission. Bit 3 of channel 11 is set  to a logic 1 to turn on the uplink 
activity lamp. The routine now checks the accuracy of the uplink transmission. This 
check is performed by comparing the three copies of the keycode contained in the uplink 
word. If all three copies do not compare, further uplink activity is locked out by placing 
a 1 in bit 1 of UPLOCK and the interrupted job is resumed. The uplink lock can be re-  
moved by the ground station sending an e r ro r  light reset  keycode or  by performing a 
FRESH START. 

3-51 



READ & STORE 
CONTENTS OF 
TTME 2 & TIME 1 

STORE CONTENTS 
OF INLINK COUNTER 
& SET IT TO +O 

CH 11, BIT 3 = 1) 

TEST TRIPLE 
CHARACTER I REDUNDANCY 

A 

STORE "0" IN BIT ,1 
OFUPLOCKTO 
ACCEPT UPLINK 
DATA 

4 YES 

READ & STORE 
CONTENTS OF 
TIME 2 & TIME 1 

SAVE KEYCODE 

SCHEDULE JOB 
CHARIN WITH 
PRIORITY 30 VIA 
EXECUTIVE NOVAC 

STORE KEYCODE IN 
MPAC OF CORE SET 
AREA RESERVED 
FOR CHARIN 

I 

SET BIT 1 OF UPLOCK 
TO I' 1" TO LOCK OUT 
FURTHER UPLINK 
ACTIVITY UNTIL 
ERROR LIGHT RESET 
IS SENT VIA UPLINK 

c- : 
17576 

Figure 3-11. KEYRUPT and UPRUPT 

3-52 



If the uplink transmission is good, a check is made to determine if an e r r o r  light reset 
keycode was transmitted. The 5 bit e r r o r  light reset keycode is 10010. This keycode 
is the same as the operator e r r o r  keycode of the DSKY and will perform the same func- 
tions. If the uplink word is e r r o r  light reset,  a 0 is placed in bit 1 of Qplock to remove 
the uplink lock if the lock was in use. 

The Executive's NOVAC subroutine is now used to schedule the Job CHARIN. After 
CHARIN is scheduled, the keycode is stored in MPAC of the core set  area reserved for 
CHARIN by NOVAC and the interrupted job is resumed. 

If the uplink transmission is good and the keycode is not e r r o r  light reset ,  a check is 
made to determine if the uplink activity is locked out. If the uplink activity is locked 
out, the interrupted job is resumed. If the uplink data is not locked out, the CHARIN 
subroutine is scheduled a s  before by NOVAC and the keycode i s  inserted into the 
reserved core set area a s  previously noted. The interrupted job is resumed. 

3 . 3 . 2  THE PINBALL PROGRAM. The PINBALL program a s  previously stated per- 
forms the functions of assembling information a s  it is entered through the keyboard of 
uplink telemetry system. It also initiates the proper function as indicated by the key- 
board o r  uplink inputs. This program is divided into various subroutines which a re  
presented in  the following paragraphs. 

3.3 .2 .  1 CHARIN. CHARIN performs a routing function to other subroutines of the 
PINBALL program. The routing performed by CHARIN is based on the keycode input 
received by the computer from either the DSKY keyboard o r  the uplink telemetry system. 
CHARIN is scheduled to be performed by either the KEYRUPT or UPRUPT routines 
when a keycode is accepted by these routines, and is performed under control of the 
Executive routine a s  shown in figure 3-12. 

When the Executive routine determines that the CHARIN is the highest priority job 
scheduled, control is routed to the CHARIN job. The processing performed by the job 
is shown by the flow diagram in figure 3-12. Upon initiation of the processing for 
CHARIN, an interlock is set up by the computer on itself so that no other programs can 
use the DSKY. In other words, the use of the DSKY is reserved for the PINBALL pro- 
gram and the astronaut or  a ground based keyboard operator. 

Control is routed to the CHARIN subroutine dependent on the keycode input. For 
instance, if a numerical keycode has been entered, control is routed to the NUM 
routine, If the NOUN keycode is entered, control is routed to the NOUN routine, 
etc. If the keycode input is illegal, control is route? to the CHARALRM subroutine. 

3 .3 .2 .2  NOUN Subroutine. Control is routed to the NOUN subroutine of CHARIN 
whenever the input keycode is that of the NOUN key. 

The following is performed by this subroutine: 

a. The NOUN REG, a memory register used to store the assembled NOUN code, is 
set to zero in preparation for the receipt of a new NOUN code. 

b. The NUM subroutine, which will  assemble the new NOUN code as  it is entered, 
is conditioned to accept the next two keycodes a s  a NOUN code. 

3-53 



0 CHAR- 

. SET UP INTERLOCK 4 
SO NO OTHER 
INTERNAL CALLING 
PROGRAM CAN 
USE THE DSKY's 

10000 .= 0 10001 = VERB 
00001 = 1 10010 = ERROR RESET 
00010 = 2 11001 = KEY RELEASE 
00011 = 3 11010 = + 
00100 = 4 11011 = - 
00101 = 5 11100 = ENTER 
00110 = 6 11110 = CLEAR 
00111 - 7 11111 = NOUN 
01000 = 8 
01001 = 9 

OTHER 14 CODES ARE ILLEGAL 

Figure 3-12. CHARIN (Sheet 1 of 11) 

3-54 

17514-1 



SET NOUNREG T O  +O 
(NOUNREG IS AN 
INTERNAL REGISTER 
WHICH CONTAINS THE 
LAST NOUN USED) 

CONDITION NUM SUB-  
ROUTINE TO ACCEPT 
A NOUN CODE 

S E T  VERBREG TO + O  
(VERBREG IS AN 
INTERNAL REGISTER 
WHICH CONTAINS THE 
LAST VERB USED) 

CONDITION NUM SUB-  
ROUTINE TO ACCEPT 
A VERB CODE. 

I 

BLANK THE DSKY 

(SET OCTAL 73777 (SET OCTAL 73777 
VERB DISPLAYS NOUN DISPLAYS 
BLANK THE DSKY 

INTO DSPTAB+ 8D) INTO DSPTABf9D) 
i 

I 

INCREMENT NOUT - 
I 

. 

CONDITION N U M  ROUTINE 
TOACCEPTANOCTAL 
ENTRY 

6 E. 0. J. 17514-2 
Figure 3-12, CHARIN (Sheet 2 of 11) 

3-55 



0 NEGSGN 

S E T  - SIGN B I T  OF 
DSPTAB ASSOCIATED 
WITH S E L E C T E D  DSKY 

S E T  + SIGN BIT OF 
DSPTAB ASSOCIATED 
WITH S E L E C T E D  DSKY 
REGISTER T O  "1" 

CHECK 
OLD CONTENTS OF 

DSPTAB 

* I . I 

INCREMENT NOUT 

S E T  + SIGN BIT OF 
DSPTAB ASSOCIATED 
WITH S E L E C T E D  DSKY 
REGISTER TO "0" 

A CHECK 

INCREMENT NOUT 
1 I 

SET - SIGN B I T  OF 
DSPTAB ASSOCIATED 
WITH S E L E C T E D  DSKY 
REGISTER T O  "0" 

OLD CONTENTS OF 
' 

INCREMENT NOUT 

CONDITION NUM 
R O U T h E  T O  A C C E P T  
A DECIMAL ENTRY 

6 E. 0. J. 

Figure 3-12. CHARIN (Sheet 3 of 11) 

3-56 

17514-3 



0 KEYCODE LOADED 8 OR 9 KEYCODE LOADED 

1 , 2 , 3 , 4 . 5 . 6 .  OR 7 
KEYCODE LOADED 

THE 8UBROUTINE 
I8 CONDITIONED 
T O  USE +O MSTEAD b4 
O F  THE ZERO 
K E Y W D E  

YES 

EXTRA CHARACTER 

SET APPROPRIATE 
DSPTAB TO PROPER 
CONFIGURATION FOR 
DIGIT BEING LOADED. 

INCREMENT OLD CONTENTS OF 
CHECK 

DSPTAB 

I SHXFT WORDBEMC I ~.." 

L E F T  0 ADD NEW 

SHIFTED WORD 
CHARACTERTO 

FORMED s PLACES I 

DECIMAL 

INPUT TO BINARY AND 
STORE IN APPROPRIATE 
INPUT BUFFER (XREG. 
YREG, OR ZREG). 

c(BUFFER) BY 1010 

NUMERAL] 
AND ADD NEW 

[MULTIPLY OLD 

T 
, 

SCALE THE DOUBLE 
PRECISION ENTRY 
WORD BY MULTIPLING 
IT B Y  214/105 (. 16384 
IN DECIMAL) 

COMPLEMENT 
DOUBLE PRECISION 
WORDS TO OBTAIN 
THE NEGATIVE 
MAGNITUDE 

* 
W 

Figure 3-12, CHARIN (Sheet 4 of 11) 

3-57 

17514-4 



SET U P  EXIT VIA 
END OF JOB 

OPERATOR ERROR 
(CH11, BIT 7 =1) 

i' ALARM 

ENTERED FROM 

OPERATION? 

PROGRAM CAUTION 

R1 = 01501 
(KEYBOARD AND DISPLAY 

ALARM DURING 
INTERNAL USE) 

I FORCE TC TRAP 1 

Figure 3-12. CHARIN (Sheet 5 of 11) 

3-58 

~~~~~~~~~~ ~~ ~ 


Q ENTER

LOADING
A N O U N O R V E R B ?

NO, DATA OR

T Q R PnnF \ " I TLTRN OFF VERB- I

SELECT NOUN
ADDRESS AND TYPE

I NOUN FLASHER
(SET CH11, B I T 6 = 0)

:OR ERROR I f OPERA? .

NOUN CODE

I I SELECT SCALE FACTOR
FROM TABLE I

TO VERB-NOL'N
ROVTINE \VHICF!

6
f

NO

OPERATOR ERROR
(CH11, RIT 7 = 1)

VERB CODE

USlNG MACHINE ADDRESS

T A B U S , PICK U P ADDRESSES
FROM NOUN ADDRESS

T O THE DATA TO BE
DISPLAYED

6
Figure 3-12. CHARIN (Sheet 6 of 11)

3-59

FLASH REMAINS ON
AND NI'W CONDITIONED
SO THAT MISSING
CHARACTERS CAN B E
LOADED

~ ~~~

0 E. 0. J.

6 E. 0. J .

17514-6

'?

VB52 PLEASE XARK Y
VB51 PLEASE MAEK.

VB53PLEASEZrURKXORY

-5 AUGK TJXE
VB54 PULSE TOROL'E GYROS

VB56 PERFORM BANIKSL7.l
-7 PERFORM SYSTEM TESTS
YBM) PREPARE FOR STAhVBY
VES1 RECOVER FRO% STANDBY
TB62 SCAN IM INBITS

VBi3 RHC USED FGR MlPL MP.
vBl4 RHC USED FOR RATE CMD.

VB76 DAP NARRC?X DEADBAND 9

VI375 DAP " D E DEADBAND

ma m m m E AGS

NOT INCLVDED IN SLWBl?tST REV 14 LISTIsG

IcHl1. BIT 7-11

SET ILLEGAL VERB

EXTVJACT. BIT 3 = 0
FL4G BY SETIWG I

E.O.J.

17514-7

Figure 3-12. CHARIN (Sheet 7 of 11)

3-60

SPARE
OR UNUSED NOUN

I

f

OPERATOR ERROR

(MACHINE ADDRESS
TO BE SPECIFIED)

PROCESS THE
ADDRESS PROVIDED
FOR MACHINE USE.

PICK U P MACHINE
ADDRESS FROM
CALLING PROG

INITIATED INTER-
NALLY OR

INCREMENT MACHINE
ADDRESS USED FOR
PREVIOUS VERB-NOUN SET BUFFER REG.

EXTERNAL

ENTRY ASSOCIATED WITH R3
TO +O

CONDITION NUM TO
ACCEPT AN OCTAL
ENTRY VERB CODE

SET DSPTABS TO
BLANK R3

R3 = ADDRESS OF
DATA DISPLAYED

I CONDITION NUM TO
LOAD DATA IN R3

1

U (CH11, BIT 6=1)

h E. 0. J.
17514-8

Figure 3-12. CHARIN (Sheet 8 of 11)

3-61

L

FREE WKY 80 INTERNAL PROGRAM CAN
UBE THE D8KY

.
RESET CAUTION INDICATORS
(SET CH11, BIT 10 - 1)

RESET D S P T A B l l D WITH THE EXCEPTION
OF BITB 4 AND (I (NO ATTITUDE AND
GIMBAL LOCK WHICH A R E LEFT INTACT

RESET TELEMETRY TOO FAST & PIPA FAIL
(SET IMODES 33, BITS 11, 12 AND 13 - 1)

.
RESET PIPA FAIL. BIT IN IMODES 30
(SET IMODES 30, BIT 10 - 1)

> I
I I
> I

RESET RADAR FAIL
BITS IN RADMO1)ES

RESET TEST ALARM.
(SET C1113, BIT 10 - 0)

TURN OFF UPLINK ACTIVITY 0 OPERATOIt
ERROR LAMPS. (YET CH11, BITS 3 AND 7 - 0)

I

SELECT DlBPWY TABLE (DBPTAB) TU
BE CHECKED .

ENSURE PROPER D8pTAB BIT 12 FORMAT

HAVE ALL
DISPLAY TABLES FROM

I BET FAJLREa I BFAJLTO + O , 1

Figure 3-12. CHARIN (Sheet 9 of 11)

3-62

0 VBRELDSP

TURN OFF UPLINK
ACTIVITY LAMP (SET
CH11, BIT 3 = 0)

b
WAKE UP SLEEPING
JOB WAITING TO USE

LIST HAVE AN DSKY (EXECUTIVE'S
JOB WAKE SUBROUTINE)

RESERVE INKY FOR
USE BY THE
AWAKENED JOB

D

1
NO I

TURNOFF THEKEY
RELEASE LAMP
(SET CH11, BIT 5 = 0)

RELEASE INTERLOCK BET
UP BY OPERATOR USE OR
UPLINK USE OF DSKY

v

17514-10

Figure 3-12. CHARIN (Sheet 10 of 11)

3-63

:: CLEAR

*
SELECT RELATIVE ADDRESS FOR CLEARING
SPECIFIED BUFFER REGISTERS & DSPTABS

YES A FIRST SINCE CLEAR LAST NO

r DECREMENT THE VERB

I 1

SET BUFFER REGISTERS ASSOCIATED WITH
THE DBKY REGISTER BEING USED TO + O

*

.
CONDITION NUM TO ACCEPT AN OCTAL
ENTRY

i

2

SET DSPTABS TO BLANK THE SELECTED
DSKY REGISTER

,

CONDITION NUM TO LOAD DATA IN THE
DSKY REGISTER JUST CLEARED

I

6 E. 0. J.

Figure 3-12. CHARIN (Sheet 11 of 11)

3-64

17514-11

c. The display table, DSPTAB+8D, i s set to octal 73777 to blank the two NOUN
display panels.

d. The NUM subroutine is conditioned to accept octal keycode entries.

After performing these functions, control is routed to the Executive End Job
routine.

3 .3 .2 .3 VERB Subroutine. The VERB Subroutine is similar to the NOUN Routine,
Control is routed to this subroutine whenever a VERB keycode is received.

The following functions a re performed by this routine:

a. The VERB REG, a memory register used to store the VERB code, is set to
zero in preparation for the receifl of a new VERB code.

b. The NUM subroutine is conditioned to accept the next two numerical inputs as
a VERB code.

c. The display table, DSPTAB+SD, is set to octal 73777 to blank the VERB display
panels.

a d. The NUM subroutine is conditioned to accept octal keycode entries.

After performing these functions, control is routed to the Executive End Job sub-
routine.

3.3 .2 . 4 SIGN Subroutine. Control is routed to the SIGN subroutine of CHARIN if
the keycode is for either the + or - key.

The processing performed by the POSGN (positive sign) is listed below:

a. A check is made to determine if a SIGN is valid at this time in the sequence of
keycode entries. If it is not, control is routed to the End Job subroutine of the
Executive. If the SIGN is valid, which it would be prior to entering a piece of
decimal data, the processing proceeds.

b. The - sign bit (bit 11) of the selected DSPTAB (display table) is set to 1. The
DSPTAB is using inverted loglc so the above action will reset the - sign bit.

c. The + sign bit @it 11) of the selected DSPTAB is set to 0. Since the DSPTAB
uses inverted logic, this action sets the + sign bit.

NOTE: Different DSPTAB registers contain the + sign bit and the - sign bit for
the DSPTAB's used to provide displays in R1, R2 and R3 of the DSKY.
The result of the above operation is that the + sign will be displayed
in the appropriate DSKY register.

d. The NUM routine is conditioned to accept decimal keycode entries.

After performing these functions, control is routed to the End Job subroutine of the
Executive.

3-65

The processing performed by the NEGSGN (negative sign) subroutine is essentially
the same a s the POSGN subroutines. The differences are that the + SIGN bit is set
to 1, the - SIGN bit is set to 0 which will result in the negative sign being lighted
on the selected DSKY register.

3 . 3 . 2 . 5 NUM Subroutine. The NUM Subroutine is used whenever a numerical
keycode is received. This routine provides for the assembly of the numerical
information a s it is entered into the computer. Control over the type of data
(either decimal o r octal) that is to be entered and the number of characters to
accept is established by the NOUN, VERB and SIGN subroutines. The NOUN and
VERB subroutines condition the NUM subroutine to accept two octal characters
while the SIGN subroutine conditions the NUM subroutine to accept a five decimal
Characters. If a word is to be entered in octal, the sign keys are not used prior
to entering the characters of the word and the NUM subroutine assumes that the
data is being entered in octal. In the assembly process, the information being
entered is converted from octal or decimal to a natural binary form,

The processing performed by the NUM routine is as follows:

If CHARIN is provided with a zero (10000) keycode, control is routed to NUM-2
prior to the keycode being processed by NUM. NUM-2 converts the zero keycode
to + O for use by NUM.

If CHARIN is provided with an 8 or 9 keycode, control is routed to 89TEST. The
89TEST will determine if digit 8 o r 9 is valid at this time.

NOTE: If the NUM subroutine had been conditioned to accept an octal input and
one of these two numerical characters are used, an operator e r ro r
exists since these digits do not exist in the octal numbering system.
Control is then transferred to the CHARALRM subroutine. The OPERATOR
ERROR indicator will be lighted. Then control is routed to the End Job sub-
routine. If the keycode entered is not an 8 or 9 for octal loads or if decimal
data is being loaded, processing proceeds.

A check is made to determine if all of the required characters have been entered
for the information being loaded. In the case of entering VERB and NOUN codes,
the required number of characters is two while five are required for either octal
o r decimal data word entries. If all of the required characters have been processed,
control is routed to the End Job subroutine and the character input is not utilized.
However, when all of the required characters have not been entered, processing
proceeds.

The correct display table (DSPTAB) location is selected corresponding to the
numerical entry being processed, and this DSPTAB is set to the proper configura-
tion to light the digit being loaded on the DSKY.

If an octal load is being made, all previously assembled information for this load
is shifted three digit positions toward the most significant digit position. Then the
newly received keycode input is added to the shifted word with the keycode in the
least significant digits. By shifting the previously assembled portion of a quantity
being loaded in octal, the magnitude of the previously assembled information is
increased by a 'factor of eight. A s the information is keyed in most significant
octal digit first, the information is assembled and "converted" to a natural binary
form.

3-66

If the information is being entered in decimal, a similar procedure is followed,
With decimal loads, all previously assembled information for a particular quantity
is shifted three digit positions toward the most significant digit position and the
same quantity shifted one digit position towards the most significant digit posi-
tions. These two quantities are added. This increases the magnitude of the previ-
ously assembled information by a factor of 10. After forming the sum of the two
shifted quantities, the newly entered keycode is added to this sum.

If a decimal load is being made, all previously assembled information is multi-
plied by 10 (Decimal) and the newly received keycode is added. The result is the
natural binary equivalent of the present decimal entry and is stored in the buffer
register corresponding to the DSKY register (R l , R2 o r R3) being loaded.

In either case, octal o r decimal loading, after the assembly and conversion proce-
dure outlined above is completed, a check is made to determine if the required
number of input characters have been provided. If not, control is routed to the
End Job subroutine.

If the required number of characters have been entered, a check is made to deter-
mine if the load is octal o r decimal. If the information loaded was octal, control
is routed to the End Job subroutine.

If the load was decimal, the information loaded is scaled by a factor of 0. 16384
and a check is made to determine if the decimal data is negative or positive. If
the quantity loaded is negative, the words of the load are complemented putting
them in negative form. If the load was positive, the information is used in its
uncomplemented or positive form. In either caae, control is then routed to the
End Job subroutine.

3 . 3 . 2 . 6 CHARALRM Subroutine. The CHARALRM subroutine is used whenever
an illegal 5 bit keycode is processed by PINBALL'S subroutines. The following is
performed:

a. Bit 7 of channel 11 is set to 1 to turn on the operator e r r o r lamp on the DSJSY.
The operator e r r o r lamp flashes.

b, A check is made to determine if the illegal keycode resulted from an external
input such as uplink telemetry o r the DSKY keyboard. If the keycode originally
was an external input, control is transferred to the EXECUTIVE'S End of Job Sub-
routine.

c. If the keycode originated internal to the computer, control is transferred to the
ABORT Routine which will result in the Program Caution lamp being lighted, Verb
05, Noun 31 being displayed and 01501 being in R1.

d. The program abort sets the computer operation into a TC Trap condition which
will force a restart.

3 . 3 . 2 . 7 ENTER Subroutine. Control is routed to the ENTER subroutine when the
keycode for the ENTER key is received. Internal programs also use the capabili-
ties provided by the routines accessible through the ENTER subroutine.

3-67

In the procedure of entering the VERB and NOUN codes, the ENTER key is used.
When it is used in this instance, the ENTER subroutine performs a routing function
to a particular routine specified by the VERB code. Also, if it is applicable, the
ENTER subroutine selects a machine address to be used by the routine specified
by the VERB code using the NOUN code. When the ENTER key is used after load-
ing a five character data word, the ENTER subroutine returns control to the routine
which requested that data be loaded.

The processing performed is as follows:

a. A check is made to determine if the ENTER is for a NOUN-VERB. If it is
not, the ENTER must have been a result of a data or address load. In this case,
the flashing of the VERB-NOUN display panels is occurring a8 set by this routine
o r the routine which requested the load. A check is made to determine if the data
o r address entry was made in octal or decimal. If the entry was in decimal, an
additional check is made to insure that five characters were entered. If the entry
was octal or five decimal characters, the noun-verb flasher is turned off and con-
trol is returned to the caller. If a decimal entry was initiated but five characters
were not entered, the OPERATOR ERROR lamp on the DSKY is lighted. The noun-
verb flasher will remain on and the NUM subroutine is conditioned to accept the
missing characters. Control is routed to the End of Job subroutine.

b. If the load was that of a VERB-NOUN code, a check is made to determine if the
VERB code is equal to or greater than octal 30. If it is, control is routed to
connecting point #l. If the VERB code is less than 30, the processing proceeds by
selecting the nouns machine address and type from applicable tables.

c. If the NOUN code is equal to o r greater than 55, the scale factors associated
with that NOUN are selected from applicable tables. A check is made to determine
i f the NOUN is legal. If the NOUN is not legal, the OPERATOR ERROR lamp is
lighted and control is routed to the End of Job subroutine. Then a check is made to
determine if the VERB code is 1 through 6. If it is, the machine address from the
Noun Address Table is used to obtain the address of the data to be displayed,
Whether the VERB code is 1 through 6 or not, control is routed to connecting point
#l. If the NOUN code is less than 55, control is routed to a check which deter-
mines the NOUN address requirement.

d. The NOUN code is checked to determine if the NOUN machine address is pro-
vided, if the previous NOUN'S machine address should be incremented, if the NOUN
is a spare or unused NOUN or i f the machine address is to be specified.

e . If a specified machine address is required, a check is made to determine whe-
ther the entry to the ENTER subroutine was due to external (keyboard or uplink)
action. If the entry was from an internal source, the address is picked up from
the calling routine. If the entry was from an external source, the buffer registers
associated with R3 of the DSKY are set to +O and the NUM subroutine is conditioned
to accept an octal entry. The display tables (DSPTAB's) are set to blank R3 of the
DSKY. The NUM subroutine is now conditioned to load data into R3 and the NOUN-
VERB flasher is turned on.

f. If a spare or unused noun code is used, the OPERATOR ERROR lamp is lighted
and control is routed to the End of Job subroutine.

3-68

g. If the noun code address is provided, the address is processed for use in the
operation specified by the VERB code.

h. If the noun code requirement calls for the previous address to be incremented,
the incrementation is performed on the machine address used for the previous
NOUN-VERB entry.

i. If the machine address is picked up from the calling routine or if the machine
address of the previous NOUN-VERB entry was incremented, the VERB code is
checked to determine if it is 05 or 15. If these are used, control is routed to
connecting point #l. If not, the display tables (DSPTAB's) a re set so that the
T4RUPT routine will display the machine address of the data displayed in R1 in R3.
Control is then routed to connecting point #l.

j. From connecting point #1, control is routed to a check on the VERB code. If
the VERB code is less than 40, the VERB code is used to route control to the
appropriate VERB routine. These routines essentially provide for the display,
monitor and load of data.

k. If the VERB code is greater than o r equal to 40, a check is made to determine
if a job is waiting to use the DSKY. If it is , 'the waiting job is activated using the
Job Wake subroutine. Then, an internal/DSKY interlock is set so that no other
internal program or job can use the DSKY other than the job just awakened. Then,
the KEY RELEASE indicator is turned off if it was illuminated. The operator/DSKY
interlock is removed to allow the internal programs to use the DSKY. The VERB
code is used to route control to the appropriate VERB route.

3 . 3 . 2 . 8 Error Reset Subroutine. Whenever the ERROR RESET key is depressed
on the DSKY o r the keycode is received via the uplink telemetry system, CHARIN
routes control to the ERROR RESET routine, to turn off e r ro r lamps and forces
bit 12 of all DSPTAB's to proper configuration,

After the display tables a re checked, FAILREG (FAILURE NUMBER REGISTER)
and SFAIL (SELF CHECK FAILURE REGISTER) a re set to zero.

3 . 3 . 2 . 9 Key Release Subroutine, The KEY RELEASE subroutine (VBRELDSP)
is processed whenever the key is depressed on the DSKY or the keycode is received
via the uplink telemetry system. This key is used after completing an entry to the
computer and releases the operator/DSKY interlock. This enables an internal pro-
gram to utilize the DSKY.

3 .3 .2 .10 Clear Subroutine. CHARIN transfers control to the CLEAR subroutine
whenever it receives a keycode for CLEAR from the DSKY or uplink telemetry
system. This subroutine tfclearsff the register R1, R2, o r R3 of the DSKY which
is presently being loaded. Successive depressions of the CLEAR key cause the
previously loaded registers to be ffclearedff. This enables the correction of
erroneously entered data but is effective only if used prior to using the last ENTER
in a sequence of entering data. Beside clearing the DSKY registers, the memory
registers used to assemble and store the information within the computer a re also
cleared. Neither verbs nor nouns can be cleared by the clear subroutine.

3-69

3 .4 ISS MODE SWITCHING ROUTINES

The mode switching routines presented in this portion of the study guide provide the com-
puter with the capability of commanding modes for the ISS. These routines can be used
whenever the appropriate subsystem is under computer control,

These routines a r e used by internal programs which use the ISS to perform the mode con-
trol function. Also, these modes can be requested to be performed through DSKY key-
board or uplink telemetry entries. When the requests are made through the DSKY or up-
link telemetry, control is routed to the routines by the ENTER routine of the Pinball pro-
gram.

3 . 4 . 1 ISS CDU ZERO (Figure 3-13). A s a result of the operator entering a V40 N20 E
in the DSKY o r an internal request for the ISS CDU ZERO mode, control will be routed
to the IMU ZERO routine. This routine provides the computer with the capability of
synchronizing the computer CDU counters with the actual CDU positions. This sub-
routine can be reduced to two steps; (1) to send a discrete "ZERO IMU CDUfsff to the
ISS. This discrete causes the electronic CDU read counter to be set to zero and further
inhibit any input(s) to this read counter, and (2) to set the computersf CDU counters to
zero after a 320 ms time delay.

Upon entry into IMU ZERO, a check will be made of coarse align and gimbal lock, since
zeroing of the IMU is not allowed with coarse align and gimbal lock condition. Assuming

made to determine if the CAGE pushbutton is pressed. If CAGING is in progress, the
interrupted program is resumed. If not, task IMU ZERO 2 is scheduled to be executed
in 320 msec if the IMU OPERATE discrete is still present. If not, a program caution
condition exists and a display of a 00210 e r ro r code is forced into R1 identifying that
the IMU is not operating and in this case the ISS CDU ZERO cannot be accomplished,

these conditions do not exist, STATE is set to indicate use of the IMU and a check is

Assuming that the IMU OPERATE discrete is present, the task is scheduled and 320
msec later the TIME 3 counter overflows causing a program interrupt and thus via the
T3RUPT program, the IMU ZERO 2 task is entered. Again a check on the caging dis-
crete is made. I€ caging is not in progress, the computers' CDU input counters a re se t
to zero, thus synchronizing the CDU Counters and the computers' CDU counters, The
ISS CDU ZERO bit position in channel 12 is set to zero to terminate this mode and a
four second delay is scheduled to allow synchronization of the CDU counters with the
gimbal angles.

After the four second delay, another check is made to see if caging is in progress. If
not, the failure inhibit bits are removed and the appropriate action is taken with respect
to the status of the ISS WARNING light. If the calling program was put to sleep prior to
zeroing the CDU's it is awakened via the Job Wake subroutine and this task is terminated,

3 . 4 . 2 IMU COARSE ALIGN (Figure 3-14). The IMU coarse align mode is entered as
a result of depressing a N20V41E or by an internal entry. It is assumed that the opera-
tor or the calling program has provided the desired gimbal angle to this routine so that
the calculations and eventual positioning of the gimbals can be accomplished.

This routine calculates, scales, and delivers the necessary pulses to cause the position-
ing of the CDU X Y Z via channel 14 and the OUTPUT COMMAND registers.

3-70

BET BTATE TO
INDICATE USE
OF M U -

OIMBAL U X K
CONDITION?
(DBPTAB 11D

BIT 0 - 1)

< PROORAM CAUTION

R1 = 00208

WITH COARSE ALION

BET IMUCADR TO
MINUS ZERO TO
INDICATE BAD MODE
SWITCIiING

CALLER

W

IMU FAIL
(BET IMODES 90,

IMU ERROR CNTR ENABL
CH 12, BITS 4 AND 6 I

ATTITUDE"
INDICATOR

ZERO IMU CDUS.
(SET CH 12, BIT 6 = 1)

I
SCHEDULE TASK
"IMUZER(32" TO BE
EXECUTED IN 320 MS

I8 IMU OPERATE

(IMODES 30. BIT
NO

PROORAM CAUTION

0 VOS N31

(IMU NOT OPERATINO)
R 1 - 00210

RETURN

CALLER

RETURN

CA LLRR

17670-1

Figure 3-13. ISS CDU-ZERO (Sheet 1 of 2)

3-7 1

=?e WE CAGING?

w
SET CDU X, Y , A N D Z
COUNTERS ZERO

I 1 REMOVE:

(SET CH 12, BIT 5 - 0)
ZERO IMU CDUS.

I SCHEDULE 4 SEC
DEWY FOR COUNTERS
TO STABIUZE 1

e 1 3 OVER

REMOVE:
IMU FAIL INHIBIT
ICDU FAIL INHIBIT

(SET IMODEB 30
BITt33AND4-0)

s TI~ERE AN u ~ m -
HIBITED P P A , ICDU,
OR IMU FAIL? (IMODES

, BITS 10, 12 AND 13)

IS9 WARNING
(CH 11, BIT 1 - 1)

1

WARNING W M P .
(SET CH 11, BIT 1 - 0)

rn

SET INTERNAL F W G SET INTERNAL FLAG
TO INDICATE BAD TO INDICATE GOOD
MODE SWITCH MODE SWITCB .

I
1

I

7 SLEEPING?

WAKE SLEEPING I JOB I w-1 17670-2

Figure 3-13. ISS CDU-ZERO (Sheet 2 of 2)

3-72

0 COARS

ALIGN.
(SET CH 12, BIT 4 - 1)

f NO ATTITUDE 3
. 7

INHIBIT IMU FAIL
(SET IMODES 30,
BIT 4 = 1)

L

SCHEDULE TASK
"COARS" TO BE
EXECUTED IN 60 MS

COARS

ENABLE IMU ERROR
COUNTER
(SET CH 12, BIT 6 = 1) .

.
SET CDUIND = 2

i

CALCULATE THE
DIFFERENCE BETWEEN
THETA D AND
CDU (*) AND STORE
IN COMMAND BUFFER

I

I I +
SCHEDULE 20 MSEC
DE LAY

120 MSEC
r - l DECREMENT CDUIND

I
* ml

X 17579-1

Figure 3-14. IMU COARSE ALIGN (Sheet 1 of 3)

3-73

(COARS 2) t -600 MS I SCHEDULE 600 MS
DELAY

SET CDUIND = 2 I
I

DESIRED CDU ANGLE POS,
NEG OR ZERO? (CALL

REDUCE CONTENTS O F
PROPER COMMAND

MANn I COMMAND

SET he INTO PROPER REDUCE CONTENTS OF
COMMAND REGISTER PROPER COMMAND

BUFFER BY MAX COM- BUFFER BY MAX

SET MAX ALLOWABLE SET PROPER COMMAND SET MAX ALLOWABLE

REGISTER (19210) REGISTER
INTO PROPER COMMAND BUFFER TO ZERO INTO PROPER COMMAND

(-19210)

0 SET PROPER COMMAND
REGISTER TO ZERO

DECREMENT CDUIND

NO YES

c
SCHEDULE 1 .5 SEC
DE LAY TO ALLOW
GIMBALS TO SETTLE

DRIVE CDUX, Y AND 2.
(SET CH 14, BITS 13, 14,
AND 15 = 1)

I i

17579-2

Figure 3-14. M U COARSE ALIGN (Sheet 2 of 3)

3-74

0 COARS

CDU ACTUAL - I THETAD = A9’

ANGLES?

SET GYRO COMPENSATION
REGISTERS TO ZERO IN

PENSATION
PREPARATION FOR COM-

T +

(=7 PROGRAM CAUTION

R1 = 00211
(COARSE ALIGN

17579-3

Figure 3-14. IMU COARSE ALIGN (Sheet 3 of 3)

3-75

After entering the IMU coarse align routine, the coarse align enable discrete is sent to
the ISS. This discrete results in the mode switch to coarse align. The IMU Failure
INHIBIT is placed in I MODES 30 because during coarse align an IMU failure could
OCCLW during the expected high drive rates. A task lfCOARS1l is scheduled via the waitlist
to be executed in 60 msec. This allows time for the mode switching to take place.

In 60 msec the TIME 3 counter overflows and the "COARS' task is started.

A check is made to see if the CAGE switch is energized. If so, the task is terminated,
Assuming that caging is not in progress, the IMU e r ro r counter is enabled and a cyclic
counter called the CDUIND (CDU indicator) is initialized to 2. This counter identifies
the specific CDU which is being operated on. If the c(CDU1ND) is +2 calculations are
on the CDUZ if the c(CDU1ND) = +1 the CDUY is operated on and if '0, the CDUX. No-
tice each time a calculation on a specific CDU angle is performed, the CDUIND is
decremented to set the routing control to select the next CDU, After calculating the last
A @ (difference Angle) a 20 msec wait is entered. This insures that the last calculation
is complete.

Again a check on CAGING is accomplished. Assume caging is not in progress, the
CDUIND is initialized for a limiting check on all three CDU's. The magnitude of the
maximum allowable output pulses is f 192 per 600 msec. This limiting insures that
the ECDU will not saturate. If the number of pulses required is less than the maximum
allowable, then the actual number of pulses is put into the COMMAND register, If the
number of required pulses is greater than the maximum allowable, the maximum allow-
able is placed into the COMMAND register and any remaining pulses will be evaluated
and sent in 600 msec. After all three CDU COMMAND registers have been loaded, a
check is made to see if pulses are to be sent.

If there a re pulses to be sent, bits 13, 14 and 15 of channel 14 are set = 1 causing driv-
ing of all three ECDU channels at once. 600 msec is allowed to send out the pulses
prior to going through the loop again.

If there a re no pulses to be sent (as will be the case when coarse align is completed) a
1 .5 sec settle time is provided.

Since the pulsing requirements for coarse align are completed, a check is now made on
the status of the CAGE switch. Assuming no caging, a check is made to see if the
coarse alignment of the IMU was accomplished to within 20 about all three axes. If
not, a program caution condition exists and the e r ro r code 00211 is displayed (coarse
align e r ror) and the program caution light is illuminated.

*X, however, all axes check to within 20, the gyro compensation registers are initial-
ized in preparation for the gyro compensation routine.

3 . 4 . 3 IMU FINE ALIGN (Figure 3-15). The Fine Align mode is entered by either an
internal program request or by entering a V42E via the DSKY. (It should be recalled
that in the Fine Align mode of operation, the CDU's repeat the gimbal position.)

Assuming that CAGING is not in progress, bits 4 and 6 of channel 12 are set to zero

seconds and the second IMUFINED in 90 seconds.
and two tasks are scheduled. The first llIFAILOK!l is scheduled to be executed in 5

3-76

A "E8

WE CAQINO? ARE F
SET INTERNAL FLAG

'"DICATE CAOINO

I REMOVE:
COARSE ALIGN ENABLE

ZERO IMll CDUS
IMU ERROR CNTR ENABLE

(SET CH 12, BITS 4, 5 , AND
a * n\ 1 ""VI - 1

TURN OFF "NO
ATTITUDE"

SCHEDULE TASK "IFAII.DICt
TO BE EXECUTED IN I 6 SEC I

SCHEDULE TASK "IMUFINED'
TO BE EXECUTED IN 80 SEC

*
WE CAGING?

I7578

Figure 3-15. IMU FINE ALIGN (Sheet 1 of 2)

3-77

9- 1 FAILOK

ARE WE
INITIALIZING ?
IMODES 30, BIT 6=1

(&) IS ENABLE COARSE PRESENT ALIGN ? YES
(CH12, BIT 4-1)

RESET IMU FAIL
INHIBIT
(1MODES 30, BIT 4=0)

b

I J

ISS FAILURES PRESE

IS9 WARNING
(CH 11, BIT 1=1) IN PROGRESS ?

I I TURN OFF
"ISS WARNING" IF ON
(CH11, BIT 1=0)

' YES

18555

Figure 3-15. IMU FINE ALIGN (Sheet 2 of 2)

3-78

Task ttIFAILOIC1 checks to see if CAGING is in progress and to see if a return to coarse
align ha8 been requeeted. Sf, in both cases, the answer is no, the IMU FAIL INHIBIT bit
in I MODES 30 is set = 0 and a check is made for any uninhibited failures.

In 90 seconds, the task "IMUFINED" is executed. The function of this task is to see if
the CAGE pushbutton has been activated and to identify a transfer to either GOOD END
or BAD END, based on caging information. It is well to note that the overall purpose of
waiting 90 seconds prior to ending the FINE ALIGN MODE switching routine is that
usually the Fine Align mode switching routine is entered immediately after performing
the Coarse Align mode switching routine. During the coarse alignment of the stable
member, the floats of the IRIG's are driven to their stops causing the float to be off
center. Therefore, during the fine alignment, the 90 second wait is scheduled to allow
the IRIG floats to recenter before any drive pulses a re generated if required.

3 .5 IMU PULSING ROUTINE

Initiation of this routine (Figure 3-16) is accomplished by either an internal entry (from a
calling program) o r by a keyboard request of V65E.

A f t e r initiation of this routine, VERB 25 NOUN 67 (load delta gyro angles), will be re-
quested by the program. This will cause VERB 21 NOUN 67 to be flashed on the DSKY re-
questing the operator to load the first double precision delta gyro angle. The format of
this data is assumed to be f XX. XXX degrees. Likewise, VERB 22 NOUN 67 and VERB 23

ters:
NOUN 67 will be flashed. The double precision data will be loaded into the GYROD regis-

X gyro: GYROD, GYROIN1

Y gyro: GYROINZ, GYRODt3

, 2 gyro: GYRODt4, GYROm5

If no data is to be loaded and the present content8 of the GYROD regioters are to be used
a s data, a VERB 33 is entered which will allow the program to proceed, If the program is
to be terminated, a VERB 34 is entered.

The IMU Pulsing routine examinee the contents of the GYROD registers and sets up the

When the mode switching routine is completed, control is returned to the calling program,
which is either TORQGYRS or the internal calling program.

A f t e r all required data ia loaded, the job IMU PULSE is scheduled via NOVAC. The IMU
PULSE routine stores the contents of the 3 D P registers containing the gyro torque corn-*
mands and checks to see if the IMU is being caged in which case the pulse torque gyro
routine would be terminated. Assuming that the IMU is not being caged, a check is made to
see if another program is using the gyros. If another program is using the gyros, the IMU
pulse routine is put to sleep via the Job Sleep routine to be wakened by the job which is 0 presently using the gyros. Once the IMU pulse routine is awakened, it will schedule the
task "Strt Gyrott via the Waitlist routine, to be executed in 10 msec. (Note that if another
program was not using the gyros this task is scheduled to be executed in 40 msec rather
than 10 msec.) The high and low order words of the three DP gyro torquing words a re
forced into sign agreement and control is returned to the caller.

3-79
1 ,

PULSE

SAVE STARTING ADDRESS
O F THE 3 DP REGISTERS
CONTAINING THE TORQUING
COMMANDS I

WE CAGING?

ENARLE GYROS
(SET CH 14 , BIT 6 = 1)

I I SCHEDULE TASK "STRT GYRO"
TO BE EXECUTED IN 40 MS

PUT THIS JOB TO SLEEP
TO BE AWAKENED WHEN
GYROS BECOME AVAILABLE

I

1
I

YES

SCHEDULE TASK "STRTGYRO'
T O BE EXECUTED IN 10 MS

I

RESERVE GYROS FOR CALL-
INC PROGRAM +

FORCE SIGN AGREEMENT
BETWEEN HIGH AND LOW
ORDER DP TORQUING
COMMAND WORDS

RETURN
TO

17571-1

D E- S E L E C T GYROS,

9, AND 10 = 0)
WE CAGING? (SET CH 14, BITS 7 , e,

NO

S E L E C T GYRO T O B E
S E R V I C E D IN O R D E R
y , 2 , x x

S E R V I C E D ?

WAKE JOB WAITING T O S E T G Y R O S E L E C T T O
USE GYROS (I F ANY) 2 FOR N E X T PASS

c

WAS S E T GYRO S E L E C T T O

NO THIS A X FOR N E X T PASS
G Y R O T O R Q U E

S C A L E FACTOR

*

I
n I S A B L E GYROS
(S E T CH 14. BIT 6 = 0) I

* W E CAGING?

Y E S

N E X T
P A G E

E X T R A C T D P TORQCING
COMMAND WORD AND SAVE
FOR INTERROGATION

IS T H E R E A TORQUING
COMMAND IN T I I E HIGI!
ORDER WORD?

NFST
1 'AGE

IS T H E R E POSSIBLE YES. 1'0s
TORQUING COMMAND
IN TI;E L O L L ' ORDER
WORD?

N E S T
P A G E J PAGE

N O

17571 - 2

Figure 3-16. IMU PULSING (Sheet 2 of 4)

3-81

e
l

PREVIOUS
PAGE

ADD -. 219 T O Low,
ORDER DP TOHQUINO
COMMAND WORD TO
ROUND OFF

ADD +. 219 TO LOW
ORDER D P TORQUING
COMMAND WORD TO
ROUND OFF

\

NEGATIVE WLBING SELECT GYRO TO RECEIVE
REQUIRED. TORQUING COMMAND
(SET CH 14, BIT 9'1 1) (SET CH 14, BITS 7 AND 8

ACCORDING TO GYRO
SELECTED) I

POSITIVE PULSING
REQUIRED.
(SET CH 14. BIT 9 = 0)

I

MERGE HIGH ORDER
D P WORD, BITS 1 - 6
WITH LOW ORDER D P
WORD, BITS 8 - 14 AND
STORE TEMPORARILY

S E T BIT 14 OF THE
TEMI'OItAItILY STOHED
ML:IfGRD WORD = 1

S E T BIT 14 OF TAR
TEMPORARILY STORED
MERGED WORD = 1

COMMAND WORD.)

4

SAVE THE NUMBER OF
ADDITIONA L AUGMENTS
REQUIRED TO PROVIDE
ENTIRE GYRO TORQUING
COMMAND. (EACH
AUGMENT = 8192 PULSES)

'

LOAD MKRQED WOl?D

PlJ'P HECilSTEH
INTO GY ItOCMI) OlIT- I NO W A D MERGED WORD

INTO OYHOCMD OUT-
P U T REGIS'I'ER -

K I I E D U I S TASK "STRT
QYRCY' TO B E EXECUTE11 DIIIVE GYRO

HAVE BEEN YENT

SCHEDULE TASK l'8192 AUG"
TO RE EXECUTED 30 MS

BEEN SENT
30 MY APTEH A L L L'UL915S (w r 14, HIT 10 - 1) 4 BEFOHE A L L PULSES HAVE

0 OVE H 17571 -3

Figure 3-16. IMU PULSING (Sheet 3 of 4)

8102AUG

2 WE CAGING?

WILL ONE MORE
AUGMENT (8192 PULSES)
COMPLETE THE GYRO
TORQUING COMMAND?

SET BIT 14 OF THE

REQUIRED OUTPUT REGISTER = 1
OF ADDITIONAL AUGMENTS CONTENTS OF GYROCMD
DECREMENT THE NUMBER

8

SCHEDULE TASK "STRT

HAVE BEEN SENT A

OUTPUT REGISTER = 1 30 MS AFTER ALL PULSES
TENTS OF GYROCMD GYRO" TO BE EXECUTED
SET BIT 14 OF THE CON-

J .
SCHEDULE TASK "8192AUG"
TO BE EXECUTED 30 MS
BEFORE ALL PULSES
HAVE BEEN SENT

I 1

*
DRIVE GYRO
(SET CH 14, BIT 10 = 1) 0 OVER

17571-4
Figure 3-16. IMU PULSING (Sheet 4 of 4)

3-83

a
When the time 3 counter overflows, the task "STRT GYRO" begins. Immediately upon
entering the task bits 7 through 10 of channel 14 are set to zero (gyro select a, b & c and
Drive Gyro). This action deselects all gyros and disables the driving of any gyro, .Again
a check to see if the IMU cage switch is "on". If so end this task and return to caller.
Assuming that the IMU is not caged, the specific gyro to be pulsed is selected. (Gyros
are pulsed individually in the order of Y 2 X. Each gyro will be driven to the desired
position before the next gyro is selected.)

The program identifies which gyro is to be selected and provides routing in accordance
with this information. Regardless of which gyro is selected, the double precision word
associated with that gyro is extracted and stored for interrogation. The interrogation
consists of looking at the high order word first to identify whether or not the contents are
zero. If the high order word is zero, the low order word is checked for a possible com-
mand. A logic one in the low order seven bits of the low order word does not necessarily
mean that a pulse will be generated since the binary point is located between bits 7 and 8.
In order to round out any low order bits a + o r -. 219 is added to the low order word to
force any "borderline case" to result in a full pulse. If the addition of + or -. 219 to the
low order 7 bits of the low order word does not yield one pulse (a 1 in bit 8), the low order
7 bits a re ignored. After the rounding is completed, negative or positive pulsing is selec-
ted. In addition to directional information, routing information as to which gyro is to be
serviced must be provided.

In order to acquire the resultant 14 bit data word used to drive the gyros, the double pre-
cision words are merged by using bits 8 - 14 of the low order word and bits 1 - 6 of the
high order word. This merging operation is explained in detail on Figure 3-17. A check
is made to see if there is more than, less than, or exactly 16383 pulses to be sent.

If there is exactly 16383 pulses to go a logic 1 is set in bit 14 of the merged data word
and the entire word is placed in the "GYROCMD" output register and the task "START
GYRO' is scheduled to be executed in X sec. (Where X will be calculated based on the
number or pulses required. If the number of pulses is less than 16383, the high order
word is examined to see if bit 7 = 1. If so, it is added to the merged word before it is
placed in the GYROCMD output register and the "START GYRO" task is scheduled to be
executed in X mc.

If, however, the original DP pulsing words indicated more than 16383 pulses, bit 14 is
added to the merged data and is set in the ''GYROCMD'' register. Now, a different task
is scheduled for X sec. The task "8192 AUG" is used for large pulse train outputs and is
rescheduled as long as the required output after sequential loops exists. NOTE: Each
time thru task "8192 AUG" 8, 192 pukes are added to the GYROCMD register. After suf-
ficient pulse trains have been sent to reduce the required pulses to zero, task "STRT GYRO"
is scheduled to complete the pulsing requirements of the other gyros. Note that in any
case, the final action is to set bit 10 of channel 14 = 1 causing the gyro drive sequence.

The routine for pulsing the gyros does the following:

a. Determines direction and amount of pulsing.

b. Services and reschedules itself.

c, Identifies desired gyro to be serviced (Y Z X).

d. Terminates itself.

3-84

3 .6 AOTMARK ROUTINE

The LM Optical Sighting MARK Routine, AOTMARK, incorporates two different star
sighting procedures to implement alignment of the LM IMU during periods of free fall and
prior to launch from the lunar surface. A description of AOTMARK is presented after a
brief description of the Alignment Optical Telescope (AOT) and the procedures used to
obtain s tar data during the in-flight and non-flight modes. A more detailed description of
the LM optics can be found in MIT R-466. Also included, figure 3-20 is a flow diagram
showing the astronaut dieplays and the general functions of the LGC during the sighting
MARK routine.

3 . 6 . 1 ALIGNMENT OPTICAL TELESCOPE (AOT). The AOT is a unity power peri-
scope with a 60 degree field of view. The shaft axes of the telescope is parallel to the
X-axis of the LM.
The center of the field of view forms an angle of 45 degrees with the LM thrust or
X-axis. By means of a pinion knob, the astronaut may rotate the telescope head
assembly about the shaft axis. This shaft angle rotation, shown in figure 3-18, is
detented at three viewing positions: the vehicle X Z plane (zero rotation), 60 degrees to
the left, and 60 degrees to the right.

Since the shaft rotation detents and the corresponding centers of fields of view (elevation)
will not be exactly f 60 degrees and 45 degrees respectively, a table of the actual values
corresponding to the particular AOT in use will be stored in the LGC memory. The

the correct values of azimuth and elevation.
0 astronaut need only specify one of three code numbers (DETENT) listed below to obtain

The AOT reticle pattern is shown in figure 3-19. The pattern consists of two straight
lines and a spiral which is so constructed as to depart radially from the 'center as a
linear function of the rotation about the center. The astronaut can rotate the entire
reticle pattern about the center of the field of view by turning a knob near the eyepiece.
A micrometer readout is provided near the knob to indicate the amount of reticle rotation.

3 .6 .2 NON-FLIGHT STAR SIGHTING. To perform a s tar sighting from the lunar
surface, the AOT shaft is rotated to one of the three viewing positions (DETENT) such
that the desired s ta r falls within the field of view. The astronaut rotates the reticle
pattern until the Y reticle line intersects the star, The micrometer dial is read and
the rotation angle (Y ROT) is recorded. The astronaut then rotates the pattern until the
spiral intersects the s tar and this rotation (S ROT) is recorded. These two angles keyed
in by the astronaut along with the DETENT code provide sufficient data to determine a
s tar direction. Only one MARK is required for a s tar sighting for the non-flight mode.
The X MARK button is used to perform this MARK.
3 .6 .3 IN-FLIGHT STAR SIGHTING. During free fall the astronaut uses only the
straight lines of the reticle pattern to perform a s tar sighting. The reticle pattern is
set at zero rotation and the spacecraft attitude is changed so as to produce crossings of
the Y and X reticle lines by the navigation star. When the star intersects the Y reticle
line, the astronaut presses the Y MARK button, The X MARK button is pressed when
the s tar intersects the X reticle line. Since the crossing of a reticle line by a star defines
a plane containing the star , the crossing of two different lines by a single star defines the

by the astronaut in order to complete the s tar sighting.
@ direction of the star. In addition to the two MARKS, the DETENT code must be entered

3-86

LEM Z AXIS

FIELD

F \

AOT

\I

Figure 3-18, LM AOT Azimuth Positions

t RE-ENCE

Figure 3-19. AOT Reticle Pattern -

IN-FLIGHT -
DETENTCODE AOT RETICLE

ROT. ANGLES -
NON-RIGHT

a Although the optical sighting procedures are different for the two flight modes, the
sequence of operations performed by the astronaut are the same as-illustrated in
figure 3-20.

During the MARKing phase of the routine, one of three verbs will be displayed to indicate
to the astronaut the MARKs that are wanted. The following i s a description of these
verbs,

Verb 51 This is a request to the operator to perform a MARK using the X MARK
button. During in-flight operations this request would normally appear
after a Y MARK has been performed. During non-flight operations this
verb is the only MARK request to appear.

Verb 52 This is a request to the operator to perform a Y MARK, This verb will not
appear as a MARK request during non-flight operations,

Verb 53 This verb is normally used during in-flight operations to indicate to the
operator that two MARKs (an X MARK and a Y MARK) are wanted. The
operator ie free to press either the X or Y MARK button a t his convenience.

After the required MARKs have been made, Verb 21, Noun 30 will be displayed indicating
that the sighted star code is wanted. If the operator is satisfied with the MARKs, he will
key in the star code and press the ENTER button ahowing MARKs accepted (MK ACCEPT).

3.6.4 AOTMARK ROUTINE. The AOTMARK routine is called up for each star sighting
which prepares the LGC to accept MARK8 and sighting data for one of the two flight
modes. For in-flight alignment of the LM IMU, both an X MARK and a Y MARK are re-
quired and for non-flight alignment only an X MARK is required.

The program sets up a VAC area for storage of the MARK and sighting data and stores
the VAC area address and desired flight mode in MARKSTAT as follows:

BITS

1-9 VAC Area Address

10 = 0 Initially to indicate an X MARK ie wanted
= 1 after an X MARK is performed

11 =O Initially to indioate a Y MARK is wanted (in-flight only)
=1 after a Y MARK is performed

12 =O while MAR- are being performed
=1 after a MK ACCEPT (ENTER)

13 =O after each MARK
=1 after each MK REJECT

14 -0 for non-flight MARKs
=1 for in-flight MARKs

15 =O

3-88

Upon entering AOTMARK, c(MARKSTAT) is tested and if found to be > + 0, the MARK
buttons are busy and Alarm (105) is fired and the job terminated. If + 0, the buttons
a re available and an idle VAC area is found. If none is available, Alarm (1207) is fired
and the job aborts, Refer to figure 3-21. a
After a VAC area is found and reserved, the GETMKS job is scheduled via the executive
NOVAC routine. Job GETMKS initiates to appropriate verb code to be flashed (VS3 for
inflight or V51 for non-flight). The job is then put to sleep until the star code is entered
via the DSKY.

Upon receiving a mark, the MARK RUPT routine is entered. The ISS CDU angle and time
a re recorded and stored for later use and control is transferred to the appropriate routine
to process the input (mark X, mark Y , mark reject o r descent bit) which caused the
MARK RUPT.

If the MARK RUPT was caused by a mark X o r Y, a check is made to insure that the
particular mark was not made previously c(MARKSTAT). If the particular mark was
marked a second time, the PROGRAM CAUTION lamp is lit along with the failure code
00114. If not marked twice, the CDU X, Y, 2 and time information is transferred into
the VAC area reserved for the AOTMARK and the REMARK routine is performed.

REMARK schedules the CHANGE VB job via the executive and sets up the information
usedin changing the verb display. CHANGE VB causes the appropriate verb code to
be displayed, V52 is displayed if a MARK Y is needed, V51 is displayed if a MARK X
is needed, V53 is displayed if a MARK REJECT occurred (INFLIGHT) or V21 N30 is
displayed if both marks have been entered.

Upon entering the star code, MK CHEK is performed. MK CHEK checks for both
marks, accepts marks and requests the AOT detent code V21 N43. Af te r entering the
AOT detent code, the AOT elevation and azimuth detent calibration is stored in the VAC
area for later use and the tilt compensation is calculated and stored in the VAC area.
If this is a non-flight AOT mark, the AOT reticle angles must also be loaded. The VAC
area reserved for the AOTMARK routine will contain the following information for the two
flight modes.

INFLIGHT NON-FLIGHT

VAC TIME 2 TIME 2

V A C + l TIME 1 TIME 1
VAC +2 CDU Y (XMARK) CDU Y
v.4c +3 CDU Y (YMARK) Y ROT

v.4 c +5 CDU Z (YMARK) S ROT
VAC+4 CDU Z (XMARK) CDUZ

VAC+6 CDU X (XMARK) CDU X
VAC+7 CDU X (VMARK) BLANK
VAC+8 AZIMUTH AZIMUTH
VAC + E E LEVATION ELEVATION

3-89

Q
vu E MARK SYSTEM

PROGRAM CAUTION

1
I I

I
R 1 = 00105
(MARK BUTTONS
NOT AVAILABLE)

1 -y
AREA AVAILABLE?

Y E S

r
STORE ADDRESS OF
VAC AREA +1 IN MARKST.4T

INITIALIZE MARK B U F F E R I (S E T X Y MARK = 0) I

(SET VACUSE = 0)

1 = INFLIGHT
0 = NON FLIGHT I INDICATE T Y P E OF

MARK SIGHTING (S E T
MARK S T A T B I T 14 =

I 1 OR 0)

.
SCHEDULE JOB " G E T
MKS' VIA NOVAC
WITH PRIORITY 32

e PROGRAM CAUTION

R 1 = 01207
(NO VAC AREAS
AVAILABLE)

F O R C E T C T R A P

I

A
W '

18522- I

Figure 3-21. AOTMARK Routine (Sheet 1 of 9)

3-90

INITIALIZE X Y
MARK (SET XYMARK =

INFLIGHT MARK
SIGHTING?

INDICATE Y MARK
(SET MARKSTAT BIT
11 = 1)

V53 FLASH PLEASE
MARK X OR Y

(PLEASE MARK)

1

PUT JOB "GET MKS'
ASLEEP AND WAIT
FOR DSKY ENTRY

I

NO
v33
OR 18522-2
v34

Figure 3-21. AOTMARK Routine (Sheet 2 of 9)

3-91

READ AND STORE
CDU Y . Z AND X AND
TIME 1 AM) 2 COUNTERS
IN RUPTSTOR THROUGH
RUPTSTOR+G

I

YES

PROGRAM CAUTION

ACCEPTED?

W

R 1 = 00112
(MARKS NOT BEING

18522-3

Figure 3-21. AOTMARK Routine (Sheet 3 of 9)

3-92

0 X MARK

SET ITEMP 1 = 1

1
. 1 S E T ITEMP 1 = 0

1 B I T 1 0 5 ;) * , 1 S E T X MARK
FLAG (XY MARK

SET Y MARK
FLAG (XY MARK
BIT 11 = 1)

WAS AN X MARK
ALREADY MADE? ALREADY MADE?
(OLD CONTENTS O F (OLD CONTENTS OF
MARKSTAT BIT 1 0 = 1) MARKSTAT BIT 11 = 1)

NO NO WAS A Y MARK

I I

1 YES

PROGRAM CAUTION

(MARK MADE BUT
NOT DESIRED)

I STORE LOW 9 BITS OF
MARKSTAT IN ITEMP 2

L
STORE TIME 1 AND 2,
A N D C D U X Y Z I N V A C
AREARESERVEDFOR

SET X Y MARK INDICA-
TOR TO INDICATE

STAT BIT 10 OR 11 = 1)
MARK MADE. (MARK-

I
S E T MARK R E J E C T
INDICATOR = 0
(MARKSTAT BIT 13 = 0)

m PROGRAM CAUTION

(MARK MADE BUT

W
Figure 3-21. AOTMARK Routine (Sheet 4 of 9)

3-93

18522-4

, YES (IS THIS AN INFLIGHT
MARK? (MARKSTAT

WAS A N X MARK

BIT 10 = 1)
(MARKSTAT BIT 10 MADE? (MARKSTAT

INDICATE MARK R E J E C T REMOVE X AND Y MARK
(SET MARKSTAT B I T 13 = 1) INDICATIONS (SET'MARK-

STAT BITS 10 AND 11= 0)

r
NO IS THIS AN INFLIGHT

REJECT? (MARKSTAT

REJECT LAST MARK
(SET MARKSTAT BITS
10 AND 11 = 0) S E T Y MARK INDICATION

(SET MARKSTAT B I T
11 = 1)

I

A REMARK

Figure 3-21. AOTMARK Routine (Sheet 5 of 9)

3-94

c 5 S E T MKDEX = 0

HAS A Y MARK B E E N

(MARKSTAT BIT 11 = 1)

YES

INDICATE Y MARK
REQUIRED
(M K D M BIT 8 = 1)

1

' HAS AN X MARK BEEN

(MARKSTAT B I T 10 = 1)

v YES
INDICATE X MARK
REQUIRED
(MKDEX BIT 7 = 1)

SCHEDULE JOB CHANGE
V B VIA NOVAC WITH A
PRIORITY OF 32 -1
A
STORE MKDEX IN MPAC
FOR DISPLAY
DETERMINATION
(X OR Y MARK)

7 x 2 2 - 6

Figure 3-21. AOTMARK Routine (Sheet 6 of 9)

3-95

IS A MARK

C(MPAC) = > + O

ARE BOTH X AND Y
MARKS REQUESTED?
(MPAC BITS 7 8- 8 = 1) (REQUEST LOAD OF

(PLEASE MARK
NO

REQUEST IS PRESENT?
(MPAC BIT 7 OR 8 = 1)

X MARK

Figure 3-21. AOTMARK Routine (Sheet 7 of 9)

3-96

18522-7

Q
< AN X MARK

MADE?
(MARKSTAT BIT -

I 1

R1- 00111
(MARK IS MISSING

INDICATE MARKS
ACCEPTED
(MARKSTAT BIT 12 = 1)

-
RE-INITLALIZE MARKS
(MARKSTAT BITS 10 -
13 = 0)

-- WAKE UP JOB

(LOAD AOT DETENT

PUT JOB TO SLEEP
UNTIL DATA IS
LOADED.

I
ENTRY

THE CODE
VALID?

1
STORE AOT ELEVATION
CAUBRATION FOR THIS
DETENT POSITION IN
VAC AREA.

STORE AOT AZIMUTH
CALIRRATION FOR THIS
DETENT POSITION IN
VAC AREA.

COMPUTE TILT COM-
PENSATION FOR THE
APPARENT TILT OF
THE AOT F. 0. V. FOR
THIS POSITION AND STORE
IN VAC AREA.

18522-8

Figure 3-21. AOTMARK Routine (Sheet 8 of 9)

3-97

NON-FLIGHT

NO FOR AN INFLIGHT
SIGHTING?

(MARKSTAT BIT

7 I
(LOAD COMP 1 AND 2 c
OF THE AOT

ANGLES)

PUT JOB TO SLEEP
UNTIL DATA IS
LOADED

f3-d ENTRY

4 WAKE JOB

STORE Y ROTATION
ANGLE IN VAC AREA
+3

-
STORE SPIRAL ANGLE
IN VAC AREA +5

7
CLEAR HIGH 5 BITS
OF MARKSTAT I

SCHEDULE TASK
ENDMARKS VIA
WAITLTST TO BE
EXECUTED IN 10 MSEC

0 MARKS

SET INTERNAL FLAG
INDICATING GOOD
END TO MARK

OVER

I852 2-9
FfDre 3-21. AOTMARK Routine (Sheet 9 of 9)

3-98

SECTION IV

MISCELLANEOUS ROUTINES

INTRODUCTION

This section of the study guide presents routines that perform various functions which are
not categorized in the other sections of the study guide. The routines presented in this
section are as follows:

a. PROGRAM ALARM

b. PROGRAM ABORT

c. FRESH START & RESTART

d, SELF-CHECK

4 .1 PROGRAM ALARM ROUTINE

The Program Alarm routine is used by all programs which require the display of a program
alarm condition. The routine illuminates the Program Caution indicator and causes Verb 05,
Noun 31 to be displayed'and a failure number to be displayed in R1, Verb 05, Noun 31 indi-
cates; display octal component 1, 2, 3 - FAILREG, SFAIL, ERCOUNT. The failure number
displayed in R1 is supplied by the processing function which is using the Program Alarm rou-
tine. This number indicates what failure condition was detected. Table 4-1 lists the failure
numbers for the program detected failures processed by this routine.

The program alarms processed by this routine are of a nature which does not require the
restarting of the computer operations, Other program caution conditions which require a
restart, a re processed by the Program Abort routine.

The flow chart for the Program Alarm routine is shown in figure 4-1. Control is routed to
this routine by an internal calling program whenever a program alarm condition is detected.
The calling program also provides the failure number. Upon entry to the routine, the return
address of the calling program is stored. Then, a check is made to determine if this is the
first alarm condition since the ERROR RESET key of the DSKY was used. If it is the second
failure, bit 15 of FAILREG is set to a binary 1 to indicate a multiple failure and control is
returned directly to the calling program using the stored return address. It should be noted
that if the T4RUPT routine has already provided the e r ro r number for the first failure to
the DSKY display (Rl) the multiple failure will not be indicated to the operator. If, however,
the second e r ror is detected and bit 15 of FAILREG is set before the display R 1 will indicate LUUIXX. If it is the third or more failure, control is returned directly to the calling program,

If this is the first alarm condition since an Error Reset, bit 9 of output channel 10 is set to
a binary 1 to illuminate the PROGRAM CAUTION lamp, Then the job DOALARM is sched-
uled to be executed using the Executive's NOVAC subroutine. After performing the schedul-
ing, the FAILREG (FAILURE NUMBER REGISTER) is set to the failure number supplied by
the calling program and control is returned to the calling program using the return address.

4- 1

FROM
CALLING

PROGRAM

STORE RETURN
ADDRESS

3 OR MORE 2nd

SINCE ERROR

PROGRAM CAUTION

SCHEDULE JOB DOALARM
ON EXECUTIVE VIA
NOVAC 1

SET FAIL REG TO
ALARM NUMBER
FROM CALLING PROG *

m

* *

INDICATE MULTIPLE
FAILURES (SET FAIL
REG, BIT 15 = 1)

b

USE STORED RETURN
ADDRESS TO RETURN
TO CALLING PROG.

Figure 4-1. Program Alarm (Sheet 1 of 2)

4-2

I

17555

NO D I S P L A Y B U S Y ?
C(GRABLOCI(> +0)

R E S E R V E WKY
DISPLAY
(S E T GRABLOCK zs + 1)

I

SCAN DSPLXET
2 THROUGH 0

A 4

VOSN31
R I = F A I L CODE
R2 = S F A I L
R 3 = E R C O U N T

W

(L O C A T E VACANT

t SCHEDULE 1
DOALARM ON
DSKY DISPLAY
WAITLIST

P U T J O B A S L E E P

18554

Figure 4-1. Program Alarm (Sheet 2 of 2)

4-3

When the processing of the DOALARM job is initiated, it obtains the use of the DSKY's
through the normal procedure. Having obtained the use of the DSKY the display table is
set to display Verb 05, Noun 31 and the contents of FAILREG (the failure number) in R1.
The DSKY interlock is then released and the DOALARM job is terminated by routing control
to the End Of Job routine.

Table 4-1. Failure Numbers For Program Alarms

h o g . Alarm No. Prog. Alarm Condition
~~

3PTICS SUB-SYSTEM

00105 Mark Buttons Not Available

00111 Mark Is Missing After Enter

00112 Mark Not Being Accepted

00113 No Inbits

00114 Mark Made But Not Desired

00115 X Mark Not Made

INERTIAL SUB-SYSTEM
002 06 Zero CDU Not Allowed With Coarse A l i g n or Gimbal Lock
00207
00210

ISS Turn-on Request Not Present For 90 Set.
IMU Not Operating

00211 Coarse Align Error

00212

00213

PIPA Fail But PIPA Is Not Being Used

IMU Not Operating With Turn-on Request

002 14 Program Using IMU When Turned OFF

4-4

Table 4-1. Failure Numbers for Program Alarms (Cont)
_ _ ~ ~ ~

Prog. Alarm No. Prog. Alarm Condition

PROCEDURAL DIFFICULTY

00401 Desired Gimbal Angles Yield Gimbal Lock

00402 Star Out Of Field Of View

00403 Star Out Of Field Of View

RADAR ERRORS

00501 Radar Antenna Out Of Limits

00502 Bad Radar Gimbal Angle Inputs

00503 Radar Antenna Designate Fail

00510 Radar Auto Discrete Not Present

00514 Radar Goes Out Of Auto Mode While Being Used

00520 No Radar Rupt Expected

00521

00522
00523

00524

Radar Data Could Not Be Read

Wrong LR Position
LR Antenna Did Not Make It

Bad Radar Target
~~ ~~ ~~~

COMPUTER HARDWARE MALFUNCTIONS

01102

01105

01106

AGC Self Test Error

Downlink Too Fast

Uplink Too Fast
DISPLAY ALARMS

01400 Pitch And/or Roll Trim Fail Is On (Shown With V50N25).

01410 Temporary Jet Fail

01411 CDU Does Not Agree With Command To 1 Degree
~~~~~ ~ 

~~ -~ 

SYSTEM TEST ALARMS 

01600 Drift Test Overflow 

01601 Bad IMU Torque In Drift, In Compass 

4-5 



4.2 PROGRAM ABORT ROUTINE 

The Program Abort routine is used by internal programs which have detected a program 
abort condition. A program abort condition requires that the computer operations be 
restarted. Otherwise, the computations or functions being performed would be erroneous 
or could not be completed. 

The end result of a program abort, besides the restarting of the computer's processing, is 
the illumination of the PROGRAM CAUTION indicator and the display of Verb 05 ,  Noun 31 
and a failure number in R1. Table 4-2 tabulates the failure numbers associated with pro- 
gram abort conditions. The processing performed by the program abort routine is shown 
In figure 4-2. 

Upon entry to the Program Abort routine the failure number is available from the internal 
program which detected the failure condition. The first item accomplished is a check to 
determine if this is the first failure since the last time the ERROR RESET key was used. 
If it is the first failure, bit 9 of output channel 10 is set to a binary l ' to illuminate the 
PROGRAM CAUTION lamp. Then the FAILREG is set to the failure number which was 
supplied by the internal calling program. 

Then, whether this is the first failure or not, a TC TRAP condition is generated. This is 
accomplished by having a TC (TRANSFER CONTROL) instruction transfer control it itself, 
After about 10 ms, the computer's TC TRAP detecting circuitry will detect this condition. 
When it does, a restart 'is forced which is similar in nature to the program interrupts. 
Control i s  forced to the Restart routine. The Restart routine among its other functions 
causes the dieplay of Verb 05, Noun 31 and the failure number in R1. 

4 .3  FRESH START AND RESTART ROUTINE 

The Fresh Start and Restart routines are closely related and will be presented together. 
The Fresh Start routine provides the computer with the capability of initialization when the 
comptter is first turned on or if a major malfunction occurs which requires almost total 
initialization1 The Restart routine also prwides an initialization function but not as com- 
plete as is performed by the Fresh Start routine. The Restart routine restarts programs 
at some logical point in their execution. However, when a restart is being performed and 
the two phase tables maintained by the Phase Table Maintenance routine do not agree, a 
Fresh Start is essentially performed. 
Thr Fresh Start routine is entered as a result of entering Verb 36 via the DSKY or uplink. 
The Restart routine Is entered whenever one of the following malfunctions is detected. 
a. PARITY FAIL 
b. POWER FAIL 
c. RUPT LOCK 
d. TC TRAP 
The TC TRAP condition is  purposely generated by the Program Abort routine if any program 
abort condition exist. The processing performed by the Fresh Start and Restart routines is 
shown by the flow chart in figure 4-3. 

4-6 



STORE RETURN I ADDRESS I 

I 

3 OR MORE 2nd 

SINCE ERROR 

PROGRAM CAUTION 
r 

INDICATE MULTIPLE 
FAILURES (SET FAIL 
REG, BIT 15 = 1) 

1 

SET FAIL REG TO ABORT 
NUMBER FROM CALLING 
PROG. 

FORCE TC TRAP 

Figure 4-2. Program Abort 

4-7 

17556 



0 RESTART 

INTERRUPTS 

INCREMENT REDOCTR 

RESTORE E MEMORY 
IF RESTART OCCURRED 
DURING SELF CHECK 
OF E MEMORY 

CH 12, 14, Ah?) 11 BY 
SETTING = +O 

+ 
SET ERESTORE = + O  

RESET TRAPS 
(SET CH 13 = 340008) I 

1 
SET T5, T3 AhP T4 
COUNTERS TO OVER- 
FLOW IN 10 MS 

INITIALIZE WAITLIST 
f6ET TASK TIMES TO 

I I % 82 SEC 'AND TASK 
ADDRESS TO Em 

1 MAKE ALL CORE SET 
AREAS AVAILABLE. 
(SET PRIORITY 
REGISTERS 9 -0) 

(SET = -0) I 
1 1 

I 

MAKE ALL VAC AREAS 
.AVAILABLE 
(SET VACUSE REG- 
ISTERS - VACUSE 
ADDRESS) 

I 

INHIBIT PROGRAM 
INTERRUPTS 

r 

- 

I I SET DISPLAY INERTIAL 
DATA FLAG= 128 

B U M (  DSKY DISPLAYS 
ASSOCIATED WITH 
DSPTAB THROUGE 
DSPTAB 10D (SET 
DSPTABS = 73777) 

I 
A 

INITIALIZE DSKY DIS- 
PLAY ROUTTh'ES. (SET 
INLINK, DSPCNT, 
CADRSTOR, REQRET, 
CLPASS, DSPLOCK, 
MONSAVE, MONSAVE +1, 
GRABLOCK, VERBREG, 
NOUNREG, DSPLIST 
THROUGH DSPLIST+O, 
MARKSTAT AND 
EXTVBRCK * + 0 )  

I 

OPTCADR, RADCADP 

A E I  

17588-1 

'Figure 4-3. Fresh Start and Restart (Sheet 1 of 5 )  



SET T4 ROUTING 
SWITCH (DSRUPTSW) 
= +o 

SET NOUT=000138 
AND SAMPLIM"77776g 

FRESH 
START 

SET DSPTAB + 11D = 
400008 TO TURN OFF 
THE ASSOCIATED 
DSKY DISPLAYS 

SET MODES 33' 
16000 (NO PIPA OR 

SET FAIL REG'+O 

INITIALIZE SELF 
CHECK BY SETTING 
SELFRET = 021018 
(GENADR) 

I 77754 (m) SET DSPCOUNT E 

SELECT NOMINAL 

* RESTART 

SET DSPTAB + I I D  
404408 TO BLANK THE 
ASSOCIATED DSKY 
DISPLAYS EXCEPT PRW 
CAUTION & GIMBAL LOCK 

1 

SET O/P CH12 BIT 
4 = 1 (COARSE ALIGN) I 

I SET T5RUPT FOR 
DAPIDLER PROG I 

SCHEDULE DOALARM 
VIA THE EXEC NOVAC 
WITH A PRIORITY OF 378 
(TO DISPLAY C(FA1L 
REG) 

I 

6 
6 18556-2 



Q RESTART 

* 

* 
YES AN LMPCMD 

I REISSUE THE LMP 
CMD (SET O/P CHI0 

I I I BIT X 5  =: 1) 

I 
UPDATE LMP 
REF. POINTER 
(LMPOUT) & SET 
LMPOUTT = - 1  

1 

INITIALIZE T4LOC 
FOR NORMAL T 4  
RUPT 

f 
I CHECK EACH PHASE I 

I AGREEMENT IN ORDER 
FROM 5- 0 

18556-3 

Figure 4-3. Fresh Start and Restart (Sheet 3 of 5) 

4-10 



- "RESH 

0 1 1 0 7 ~  FOR DISPLAY 
LESTART 

IN RZU(PHASE TABLE 
DISAGREEMENT IN I 

INITIALIZE BY SETTING 
TO +0: SMODES, MODREG, 
AGSWORD, UPLOCK, CDU, 
COUNTERS, LMPCMDS, 
LMPTN, LMPOU" 6 
PHASE 0 + 5 

I 
. 

I INITIALIZE BY SETTING 
TO - 0 PHASE 0 -  5 I 

INITIALIZE LMPOUTT 
BY SETTING TO -1 

INITIALIZE T4 LOC 
FOR NORMAL T4 RUPT 

ALL PHASE 
NUMBERS AGREE 7 

INACTIVE 

1 d GROUPS 5 THRU 2 

) N O  A PHASE DATA 

--.-UIINATE 

< GOOD 7 > 

SCHEDULE THE 

INITIALIZE IMODES 30 
FOR FRESH START 
(SET IMODES 30 - 37411) 

SCHEDULE lFAILOK 
ON WAITLIST TO 
OCCUR IN 5 SEC. NO 

J 

SET T5 ADR. FOR SETIDLER 
(TO INSURE A ONE SEC. 
DELAY BEFORE DAPIDLER) RETAIN 1MODESBO 
SET DAPBOOIS - 04016 6 FAIL INIIIBITS (1, 3, 4 & 5) 
IMTLAUZE STATE -STATE & RESET ALL IMU FAIL 
+ 3 (SET TO +0) BITS (9 THRU 14 = 1) 

18556-4 

.Figure 4-3. Fresh Start and Restart (Sheet 4 Of 5) 

4-11 



YES 
\ LAMP STILL 7 

- 
NO 

1' 

I SET lMODES 30 
BIT 9 (IMU OPERATE) I 

I I TO + O  I (SO THAT T4 
WILL NOT ZERO CDUS) 

I I I 

I I RELEASE PROGRAM 
INTERRUPT INHIBIT 

DISPLAY MAJOR I MODE I 6 TO DUMMY 

18556-5 

Figure 4-3. Fresh Start and Restart (Sheet 5 of E) 

4- 12 



Table 4-2. Failure Numbers For Program Aborts 

Prog. Abort No. Prog. Abort Condition 

ZOMPUTER HARDWARE MALFUNCTION 

01103 Unused CCS Branch Executed 

LIST OVERFLOWS 

01201 Executive Overflow-No VAC Areas 

01202 Executive Overflow-No Core Sets 

01203 Waitlist Overflow-Too many Tasks 

01206 Keyboard And Display Waiting Line Overflow 

01207 No VAC Area For Marks 

01210 Two Programs Using Device at Same Time 

[NTERPRETER ERRORS 

01301 ARCSIN-ARCCOS Input Angle Too Large 

0 1302 SQRT Called With Negative Argument. 

KEYBOARD AND DISPLAY PROGRAM 

01501 Keyboard And Display Alarm During Internal Use (NVSUB) 

An entry through FRESH START or RESTART will set the computer S O  that ail Program 
interrupts willbe inhibited during the routine. 

If this is a RESTART the REDOCTR will be incremented to maintain the total number of 
times the RESTART has been performed. 

If the RESTART occurs when the self check has two words removed from erasable memory 
these words are  restored before continuing. 

Output channels 12, 14, and 11 are  initialized by setting them to + O  and ERESTORE is like- 
wise set to + O .  

Al l  traps are  reset by setting channel 13 bits 12, 13 and 14 to logic 1. 

The TIME 5, TIME 3 and TIME 4 counters are set to overflow in 1 0  MS so their respective 
routines will be executed the next time the counters are incremented. 

4- 13 



The WAITLISTis initialized by setting all task times to approximately 82 seconds and all 
task addresses to ENDTASK. 

All core set  areas are made available for executive use by setting the priority register of 
each to -0. The register NEWJOB will likewise be set  to -0. 

Al l  VAC areas are made available by setting the contents of each VACUSE register to the 
corresponding VACUSE address and the display inertial data flag is set to 128. 

The blanking constant, 73777 is set into each DSPTAB through DSPTABlOD so that T4 will 
blank the DSKY displays associated with these DSPTABs when program interrupts are again 
allowed. 

The following locations, which a re  concerned with DSKY display routines are initialized by 
setting them to +0: INLINK, DSPLNT, CADRSTOR, REQRET, CLPASS, DSPLOCK, 
MONSAVE, MONSAVE+ 1, GRABLOCK, VERBREG, NOUNREG, DSPLIST, through 
DSPLIST+2, MARKSTAT, and EXTVBACT. 

IMUCADR, OPTCADR, RADCADR, and LGYRO are all initialized by setting to +O. 

The T4 routing switch (DSRUPTSW) is initialized by setting it to +O. 

NOUT is set to octal 13 to serve a s  a flag for the T4RUPT routine to indicate that DSPTAB 0 
through DSPTAB 10D all require interrogation and consequently a change in the DSKY displays 
associated with these DSPTABs. 

IMODES 33 FAIL bits a re  reset, and RADMODES is initialized. 

The SELFRET register is set so that when the computer first enters self check after a 
FRESH START o r  RESTART it will enter at  the beginning. 

DSPCOUNT is initialized to octal 23, the telemetry program is initialized and the nominal 
downlink list is selected for transmission of downlink data. 

DSPTAB 11D is set to blank all associated lamps on the DSKY if this is a FRESH START, 
or  to blank all except PROGRAM CAUTION and GIMBAL LOCK if this is a RESTART. 

If this is a RESTART the status of the coarse align enable (channel 12, bit 4) will depend 
on the condition of the GIMBAL LOCK lamp, 

The job DOAURM is scheduled with a priority of 37 to set up the DSPTABs associated with 
R1 so that the contents of FAILREG will be displayed. 
Further action in the RESTART routine is dependent upon the condition of the MARK REJECT 
and the DSKY RSET pushbuttons. If the MARK REJECT and the DSKY RESET pushbuttons are  
pressed, the computer will essentially perform a FRESH START. Assuming this is not the 
case, the LM mission programmer command pointer is updated and if a LMPCMD was in 
progress, the command is reissued, (T4LOC) is set  for a normal T4RUPT, and the phase 
tables are checked for agreement. The two registers in each phase table group should con- 
tain the complement of each other for agreement. If any group disagrees or  if the phase data 
is bad (contains a phase larger than 127 decimal) octal code 01107 will be processed for dis- 
play in R2. (Phase Table Disagreement DOFSTART) and the computer will proceed as  if in 
FRESH START, 

4- 14 



After all phase tables have been determined satisfactory, and all jobs associated with the 
active groups have been scheduled, all failure codes inIMODES30 will be reset. Although 
the failure codes in IMODES 30 are  reset, the IMU Fail inhibits will be left intact. 
Had a FRESH START been requested initially or  entered through RESTART, the following 
registers would be set to + O ;  SMODES, MODREG, AGSWORD, UPLOCK, CDU Counters, 
LMPCMDS, LMPIN, LMPOUT, and the PHASE 0 through 5. The PHASE 0 through 5 would 
be set  to -0 and LMPOUT T set  to -0. T4LOC would be set for a normal T4RUPT and 
IMODES 30 inittalized. Task IFAILOK would be scheduled on the waitlist to occur in 5 
seconds and the T5 address initialized. 
From this point on the FRESH START and RESTART routines are identical. The GIMBAL 
LOCK lamp is interrogated and if  on IMODES 30, bit 9 is set to 0 to prevent zeroing of the 
CDU's. 

The program interrupt inhibit is then removed and the major mode is displayed prior to 
entry into DUMMY JOB. 

4.4  SELF-CHECK ROUTINE 

There are  19 possible options in the SELF-CHECK routine. The first 18 options are  used 
to check the internal operation of the computer (*O to *lo) while the 19th option (*ll) checks 
the electroilluminescent displays and associated controlling hardware on the DSKY. Options 
associated with i 10  or - zero will probably be used the most since all three of these options 
perform a complete internal self-check of the computer. However, these three options 
perform different diagnostic functions when an error  is detected. The options associated 
with il to i 7  check out various parts of the computer and are useful for diagnostic testing of 
the computer. The normal use of SELF-CHECK is as a routine to check the computer con- 
tinuously when the computer is not busy with other routines. The *lo or -zero options are  
used for this purpose. 

4 .4 .1  SELF-CHECK OPTIONS. The SELF-CHECK option depends on what is written 
into the SMODE register to tell the computer what option of SELF-CHECK is desired. 
Placing a + O  in the SMODE register forces the computer to go into the backup idle loop 
where it continuously looks for a new job. The SMODE register is set to + O  during 
FRESHSTART, however, the content of SMODE can be controlled by the operator 
through use of the DSKY. 

Placing a iNON-ZERO number below octal 12 or  -0 in the SMODE register starts one of 
the active options of SELF-CHECK. Below is a description of what section or sections 
of the computer the options check. A block diagram in figure 4-4 shows the options 
available and indicates the number to put in the SMODE register for the desired option. 

il octal: SOPTION 1. Checks all pulses possible by internal control of the 
computer except those used exculsively by the IN-OUT instructions, 
In addition, SOPTION 2 will always be performed before re-entering 
SOPTION 1. 

i 2  octal: SOPTION 2. Checks all the IN-OUT instruction pulses. 

kt3 octal: SOPTION 3. Checks central processor registers and all bit com- 
binations. 

4- 15 



t 
I ALL PULSES POSSIBLE TO BE 

CHECKED EXCEPT IN-OUT 

I 1 SOPTION 1 

1 I 
I 

*l I .  1 
IN-OUT PULSES 
SOPTION 2 

I I I I 1 I 

SPECIAL AND CENTRAL REGISTERS 
SOFTION 3 

I I 

ERASABLE MEMORY 
SOPTION 4 

I 
*5 

I 
FIXED MEMORY 
SOPTION 5 

I I 

I ARITHMETIC MULTIPLY 
*6 SOPTION 6 

it10 
OR 
-ZERO 

1 
*ll 

ril DSKYCHK 

PUT +O IN SMODE 
(GO TO BACKUP IDLE LOOP) 

I 
a7 ARITYMETIC DIVIPE 

I I 
SOPTION 7 

17572 

Figure 4-4. Self Check Options 

4- 16 



&5 octal: SOPTION 5. Checks fixed memory. 

*6 octal: SOPTION 6. An extensive multiply arithmetic check. 

A-7 octal: SOPTION 7. An extensive divide arithmetic check. 

110 octal o r  -0: Next SOPTION. Checks everything in the previous seven options 
(complete self-check of the computer). 

*ll octal: DSKY CHK. Checks the electroilluminescent displays in the DSKY. 

+ zero: Does not purposely check any part of the computer but forces 
the computer to stay in the backup idle loop, a tight loop which 
looks for a new job from the EXECUTIVE. 

SELF-CHECK has its own verb-noun combination that is utilized 
when starting any of the options from the DSKY (verb 21 and 
noun 27). 

V2 1N27 E ( i o  or &NON-ZERO) E 

This procedure puts the desired number in the SMODE register 
depending upon the option desired. The pressing of the second 
enter (E) button completes the procedure. 

4 . 4 . 2  ERROR DETECTION, The block diagram in figure 4-5 shows the Count Registers 
and Self-check Error Detection with rtl0 or  -0 in SMODE. If SELF-CHECK should detect 
an error ,  the following sequence of events will occur: 

Step 1: The contents of the Q register is put in the SFAIL register. 
(This is the address of where the error  occurred, +l. ) 

Step 2: The ERCOUNT register is incremented by one. 

Step 3: The Program Caution lamp on the DSKY is turned on. 

Step 4: Octal 01102, AGC SELF CHECK ERROR, is inserted into FAILREG, 
C(FAILREG), C(SFA1L) and C(ERC0UNT) are displayed in R1, R2, 
and R3 of the DSKY, respectively. 

Step 5: (a) Enter Backup Idle if C(SM0DE) = +lo.  

(b)  Start at beginning again if C(SM0DE) is -10. 

(c )  Continue on with SELF-CHECK at the next address after the 
e r ro r  if  C(SM0DE) is -ZERO. 

If a second malfunction is located octal 41102 is put in the FAILREG register but steps 3 
and 4 are omltted slnce Program Caution lamp is already on and 01102 is already in R1. 
Steps 3 and 4 are  omitted from all successive malfunctions until the FAILREG register is 
made +zero (normally by performing a "FRESH START'). A FRESH START will also 
set SMODE (if a Verb 36 had been entered), SFAIL, and ERCOUNT to +zero while a 
RESTART will set SFAIL to +zero. 

4- 17 



L 

ERROR DETECTED 

INCFEMFNT SCOUKT 

SET CONTENTS OF 
(>  I N  SFhl l .  REG.  

-\ 

-7 
I 

I 
INCREMENT ERCOVNT 

INCREMENT SCOCNT 

PERFORM SOPTION 3 I *- I 
INCREMENT SCOUNT 

R2 = c(SFA1L) 
R3 = c(ERC0UNT) 

INCREMENT SCOUNT 

PERFORM SOPTION 5 D - 1. 

INCREMENT SCOUNT "7 
I 

+ [ PERFORM SOPTION 6 b *- -" 
*- -1 -4. 

INCREMENT SCOUNT 
- 2 2 .  

PERFORM SOPTION 7 

INCREMENT SCOUNT+Z 

L I 

CONTINUE H'ITH 
SELF CHECK AT 
ADDRESS DEFINED 
BY SFAIL 

- 10 

GO TO BACK-UP IDLE 

17574 

Figure 4-5. Count Registers and Self Check 
Error Detection with *lo or -0 in SMODE 

4- 18 



It is possible to leave SELF-CHECK on for a long period and keep track of the number of 
malfunctions that have occurred by observing the ERCOUNT register. The SFAIL 
register will contain the e r ro r  address +1 of the last malfunction. 

Figure 4-6 is the flow diagram for Self Check with *1 - *7 in SMODE. The corresponding 
SOPTION is performed continuously until an error  is detected at which time the error  is 
displayed in the same manner as previously discussed. 

4 . 4 . 3  DSKY CHECK. Putting a ill in the SMODE register (see figure 4-7) illuminates 
all possible electroilluminescent displays on the DSKY. The subroutine then puts a 
+zero in the SMODE register. This routine does not automatically check for a malfunction 
of the computer. It depends on an observer to watch the DSKY for the proper displays. 

No useful function will be performed by putting a number larger than octal 11 in the 
SMODE register because no SELF-CHECK subroutines have been written for these 
numbers. If octal 12 or a larger number is put in the SMODE register a subroutine will 
change the contents of the SMODE to +zero, which forces the computer to go to the 
backup idle loop. 

4 . 4 . 4  HOW TO USE THE DSKY TO MONITOR SELF-CHECK. The block diagram in 
figure 4-5 shows how the three SCOUNT registers may be utilized to monitor the opera- 
tion of SELF-CHECK. SCOUNT (1366) is incremented at the start of each of the seven 
minor loops that make up the internal computer self-check even if they are run through 
consecutively a s  they a re  when i 1 0  or -zero is in SMODE. 

EXCEPTION: When i 1 0  or  -zero is in SMODE SCOUNT is not incremented 
at the beginning of the SOPTION concerned with IN-OUT pulses. 

SCOUNT +1(1867) is incremented upon the completion of the erasable memory SOPTION 
when i 4 ,  i 1 0 ,  or -0 is in SMODE. SCOUNT +2(1370) is incremented upon the completion 
of the arithmetic divide SOPTION when *7, *lo, or  -0 is in  SMODE. The incrementing 
of the SCOUNT +2 indicates the successful completion of the complete self-check of the 
computer. If a V15NOlE 1366E is performed on the DSKY, the contents of these three 
count registers will  appear in R1,  R2, and R3 of the DSKY, respectively. 

It may be desirable, for information or diagnostic reasons, to set the three SCOUNT 
registers and the ERCOUNT register to zero before initiating one of the options of 
SELF-CHECK. If so, these four registers have to be set to zero from the DSKY. The 
following procedure will accomplish this operation: 

Step 1: V2 lNOlE 17653 OOOOOE (ERCOUNT register) 

Step 2: N15E OOOOOE (SCOUNT register) 

Step 3: E OOOOOE (SCOUNT +1 register) 

Step 4: E OOOOOE (SCOUNT +2 register) 

4- 19 



0 CHECK 

INCREMENT SCOUNT 

PERFORM SOPTION ERROR D E T E C T E D  
DEFINED BY c ( S M 0 D E )  

SET COXTENTS OF 
Q IN SFAIL REG. 

GO T O  BACK-UP IDLE 
[SET c(SM0DE) = + 01 L 

INCREMENT ERCOUNT 

Figure 4-6. Self Check Error Detection with il - *7 in SMODE 

0 CHECK 

PERFORM DSKY CHI( 

GO TO BACK- UP IDLE 
[SET c ( S M 0 D E )  - + 01 

17573 

Figure 4-7. Self Check with ill in SMODE 

4-20 



4.4.5 SELF CHECK FLOW. Self check (figure 4-8) is entered from DUMMY JOB 
whenever a job of higher priority is not scheduled. The self check routtne is composed 
of eight major subroutines; SOPTION 1 through 7 and DSKY CHECK. "he operator can 
route the computer to the desired subroutine by loading the SMODE register with the 
appropriate value, through the use of the DSKY. In order to cause the computer to con- 
tinuously perform any option the SMODE register must be loaded with the option number 
desired. Either a plus o r  minus may be used as both will cause entry into the desired 
option and as  long as  an e r ro r  is not detected the computer will react identically to both. 
However, if an e r ro r  is detected, the computer reacts differently to a plus than to a minus 
value. If the SMODE register is loaded with ~ 1 0  or -0 all seven options will be performed 
consecutively beginning with SOPTION 1. Again, the computer reacts identically to all 
three of these values until an e r ro r  is detected. If the SMODE register is loaded with *ll, 
the computer will perform the DSKY CHECK. The operator has control over the contents 
of SMODE, however, the computer will set  SMODE to + O  under certain conditions. 

Upon entry into self check, the starting address of SOPTION 1 is saved to be used in case 
the contents of SMODE = * l O  or  -0. 

After checking again to make sure that another job with a higher priority is not waiting, 
the SMODE register is checked to determine which subroutine to enter. If the SMODE 
register contains +0, a tight loop exists in which the computer does not perform a 
meaningful function, but merely continuously checks for a higher priority job or a change 
in SMODE. This loop is designated the "back-up idle loop". 

If SMODE contains -0 or  *l through *lo the SCOUNT register is incremented. This 
register is incremented each time to provide a total of the number of times the computer 
passes through this point. The SCOUNT register can be loaded through use of the DSKY. 

If SMODE contains a quantity greater than +11 or less than -11, SMODE is set to + O  
which forces the computer into the back-up idle loop. A number larger than kll in 
SMODE therefore is meaningless to the computer, 

If SMODE contains ill, SMODE is set  to + O  and DSKY CHECK is entered. The next 
time SMODE is checked (upon completion of DSKY CHECK) the back-up idle condition 
will exist. 

The seven options perform the following: 

SOPTION 1 Checks all instruction pulses generated by the computer except 
those used exclusively by the IN-OUT instructions. 

SOPTION 2 Checks the IN-OUT instruction pulses. 
SOPTION 3 Checks the counting ability and the ability to handle overflow and 

SOPTION 4 Checks erasable memory. 
SOPTION 5 Checks fixed memory. 
SOPTION 6 Checks multiply arithmetic ability. 
SOPTION 7 Checks divide arithmetic ability. 

underflow situations. 

4-21 



The option specified by SMODE will be entered and upon completion (providing an error  
is not detected) will return to check for a scheduled job of higher priority. If none is 
found, SMODE will again be checked and assuming it has not been changed, the option 
will be repeated, The specified option will, therefore, be performed continuously 
whenever the computer is in SELF CHECK. If SMODE contains *l SOPTION 1 and 
SOPTION 2 will be performed. If SMODE contains * l O  or -0, SOPTION 1 is entered and 
all options are  performed consecutively. Again upon successful completion of the entire 
loop, it is repeated as long as the computer is in SELF CHECK. 

Whenever an error  is found, the subroutine ERRORS is entered. The address of the 
instruction immediately following the point where the e r ro r  was detected is saved and 
stored in the SFAIL register and the ERCOUNT register is incremented. 

The PROGRAM CAUTION lamp is lit i f  not already on and V05 N31 is displayed. R1 
displays the contents of FAILREG, whichis 01102 (AGC self check error);  R2 displays 
the contents of SFAIL; and R3 displays the contents of ERCOUNT. If an e r ro r  had been 
detected previously and the alarm displayed, the second e r ror  will set  bit 15 of FAILREG 
to 1 to indicate the existance of multiple errors. 

The contents of SMODE is examined to route the computer to the desired point. If the 
contents of SMODE is less than -0, the option specified is entered again, at the beginning, 
If the contents of SMODE is -0, self check is continued at the next instruction after the 
point where the e r ro r  was detected. If the contents of SMODE is + O  or greater, SMODE 
is set to + O  and the computer is forced into the back-up idle loop. Each of the eight 
major subroutines is discussed below. 

SOPTION 1 - This option checks the pulses which are generated to implement all 
instructions, except those used exclusively with IN-OUT instructions. The method used 
to check the control pulses is to perform the instruction, check the result, and transfer 
control to the ERRORS subroutine whenever the result is not as expected, The branching 
type instructions are  provided with direct access to the ERRORS subroutine on a wrong 
branch, whereas the arithmetic functions generally make extensive use of -0 CHECK, 
+ O  CHECK, -1 CHECK and +1 CHECK subroutines. Values are  chosen such that when 
manipulated by the instruction(s) being checked a result equal to one of the above values 
is obtained, A failure will route control to the ERRORS subroutine. 

Upon completion of SOPTION 1, SOPTION 2 is always performed before returning to 
check SMODE. 

SOPTION 2 - This option checks all control pulses used in the IN-OUT instructions. 
The method used is identical to that used in SOPTION 1. 

SOPTION 3 - The first part of this option is used to check the ability of the computer 
to count up a 14 bit number. This is accomplished by initializing SKEEP 6 to 37777 and 
SKEEP 7 to 40000 and decrementing SKEEP 6 and incrementing SKEEP 7 until SKEEP 6 
contains + O  and SKEEP 7 contains -0.  

4-22 



Immediately after initializing SKEEP 6 and SKEEP 7 the contents of SKEEP 6 is checked 
for + O .  Assuming SKEEP 6 is not + O  its contents minus 1 is added to the complement of 
its contents. The result, provided all control pulses are  being generated properly, is -1. 
An incorrect value will cause a transfer to the ERRORS subroutine while a correct value 
will cause a continuation of this option. A check is made at this point to see if  a new job 
of higher priority has been scheduled since the last time we looked. After checking for a 
new job, the complement of SKEEP 6 is examined. If this value is less than -0, the con- 
tents of SKEEP .6 is decremented; if  the value is -0, SKEEP 6 is not decremented. In 
either case, the contents of SKEEP 6 and SKEEP 7 are  added which should result in -1. 
A check is made for this quantity as before, after which SKEEP 7 is incremented and the 
loop is repeated, This action continues until SKEEP 6 contains + O .  At this point SKEEP 7 
should contain -0. Addition of these two quantities then will produce a -0 and the count 
check portion of SOPTION 3 is complete. 

The second portion of SOPTION 3 checks the ability of the computer to handle overflow 
and underflow situations when they occur. 

Initially, SKEEP 5 is set to 40000 and a maximum overflow quantity is set up. This 
quantity is checked, determined to be greater than +0, decremented, and stored in 
SKEEP 4. Next, a check is made to see if the quantity is still overflow. The low 14 bits 
of the overflow quantity is then added to the contents of SKEEP 5 which should result in 
a -1. If this is the first time through this point, a maximum underflow quantity is set  up 
and the second half of the OVFLOW loop is entered. This time the quantity is determined 
to be less than -0 after which it is  complemented and decremented. The quantity should 
still be overflow, in which case the low 14 bits is again added to the contents of SKEEP 5 
to produce a -1. The computer now looks for a job of higher priority and upon finding 
none the contents of SKEEP 5 is diminished, the last overflow quantity checked is decre- 
mented, and the loop is repeated. This action continues until an overflow quantity after 
being decremented results in a quantity which is no longer overflow, A t  this time the 
contents of SKEEP 5 should be -0 and the contents of SKEEP 4 should be 37777. These 
two values a re  checked and control is either transferred to ERRORS or to the lead in 
section of SELF CHECK to check for a new job and to interrogate SMODE. This option 
is now complete and the next self check subroutine depends on the contents of SMODE. 

SOPTION 4 - This option provides an extensive check of the erasable memory. Most 
locations are checked to make sure that the computer can write into the location and read 
out what was written. SOPTION 4 is begin by selecting erasable bank 00 and starting 
address 01462 as  the first location to be checked, The address to be checked is stored 
in SKEEP 7. The check of the addrdss is started by saving the present contents of the 
address contained in SKEEP 7 a s  well as  the next successive address. The contents of 
these two addresses are  then set to their own address. (e. g. ~(01462) - 01462 and 
~(01463) - 01463. ) The contents of the first address is then added to the complement of 
the contents of the second which should provide a -1 result. Next, the content of the two 
addresses is set to the complement of their own address. (e. g. ~(01462) = 76315 and 
~(01463) = 7.6314.) The contents of the second address is now added to the complement of 
the first which again will result in a -1. If either of the -1 checks is unsatisfactory, con- 
trol will be transferred to the ERRORS subroutine, After successful completion of these 
checks, the original contents of the two addresses is restored, a check for new job is 
made and assuming none is found, the next address is determined. Assuming we have the 
EBANK set to select bank 00, a few decisions must now be made. If address 01777 has not 
been checked, SKEEP 7 is incremented and the ERAS LOOP is performed again. 

4-23 



NOTE: The first time through the ERAS LOOP, 
addresses 01462 and 01463 were acted 
upon. This time, since the contents of 
SKEEP 7 is 01463, addresses 01463 and 
01464 will be acted upon. (The second 
address of the first pair is the first  
address of the second pair. ) 

This loop is repeated until address 01777 has been checked at which time, since address 
00062 has not been checked, SKEEP 7 is set to 00062 and the loop continues to be repeated 
until address 01374 has been checked. 

NOTE: Even though EBANK is set to bank 00, 
addresses 00062 through 00377 will be 
picked from bank 00;  addresses 00400 
through 00777 will be picked from bank 
01; and addresses 01000 through 
01364 will be picked from bank 02. 
Addresses 00062 through 01374 will 
always be picked from these three 
banks regardless of the content of - 
EBANK. 

After address 01374 has been checked, checking will  continue at the desired address of 
the next bank. The method of checking the erasable memory with other values in EBANK 
is identical except that the block of addresses checked may be different. Table 4-3 shows 
the addresses checked and their bank designations with different contents in EBANK. 

After checking erasable memory with EBANK = 7 ,  control is transferred to the CNTR 
CHECK portion of SOPTION 4. The CNTR CHECK portion of SOPTION 4 performs a CS 
instruction on all addresses from 00061 through 00010, and manipulates data in all shift 
and cycle registers. The data is chosen such that when shifted or cycled and added to a 
constant, the result is -1 on two occasions. The normal check for -1 is performed and the 
normal transfer of control to the ERRORS subroutine will follow if it fails. A satisfactory 
check will terminate this option, however, before returning to the lead in section of SELF 
CHECK to check for a new job and look at SMODE the SCOUNT register will be incremented. 
This register will contain the number of times we have passed through SOPTION 4. 

SOPTION 5 - This option performs a check of fixed memory by adding every word in a 
bank together. The last word in each bank is always chosen such that the sum of all words 
in the bank will equal either the bank number o r  the complement of the bank number. 

The option begins by selecting fixed bank 0 ,  obtaining the first word in the bank and 
starting it in SKEEP 1. Since this is the first word in the bank, the next decision will 
be based on whether we are in ROPECHK (SOPTION 5) or SHOWSUM. (SHOWSUM is a 
separate job which is not a part of the SELF CHECK routine. SHOWSUM, however, does 
use the the same block of instructions and therefore will be discussed here. ) Assuming 
we are  in ROPECHK a check is made to make sure a higher priority job is not waiting before 0 the next word in the bank is obtained. This word is then added to the contents of SKEEP 1 
and the sum is stored in SKEEP 1. This loop continues to be repeated until the last word 
in the bank has been obtained. The sum of the bank is then present in SKEEP 1. Again 
assuming we are in ROPECHK, control is transferred to the subroutine BNKCHK. 

r 4-24 



Table 4-3. Erasable Addresses Checked in SOPTION 4 

C (EBANK) Bank Designation Address Checked - 
00 

02 01000 - 01374 
0 1  00400 - 00777 

00 00062 - 00377 
00 01462 - 01777 

01  01400 - 01777 01 

00062 - 00377 00 

00400 - 00777 0 1  
01000 - 01374 02 

02 02 . 01400 - 01777 
00062 - 00377 

02 01000 - 01374 
01 00400 - 00777 

00 

03 01400 - 01774 03 

00062 - 00377 00 

00400 - 00777 
02 01000 - 01374 
01 

04 04 01400 - 01777 

00062 - 00377 

02 01000 - 01374 

01 00400 - 00777 

00 

05 01400 - 01777 05 

00062 - 00377 00 

00400 - 00777 
02 01000 - 01374 
01  

06 01400 - 01777 06 

00062 - 00377 

02 01000 - 01374 

01  00400 - 00777 

00 

07 07 01400 - 01777 
00062 - 00377 

02 01000 - 01374 

01 00400 - 00777 

00 

L 

4-25 



BNCHK sets the contents of SKEEP 1 equal to the absolute value of the old contents of 
SKEEP 1 decremented by 1, and puts the bank number in the 5 low order bits. The bank 
number is then complemented and added to the contents of SKEEP 1. The result should 
be -1. The bank number is then incremented and providing the new bank number is less 
than 22, SKEEP 1 is initialized to zero and the same process is repeated for the next 
bank. Each bank is checked until bank number 22 is specified, at which time (again 
assume ROPECHK) control is transferred back to the SELF CHECK lead in to look at 
SMODE. 

The job SHOWSUM is scheduled via the executive NOVAC with a priority of 02 whenever 
the operator keys in V56 ENTR. (Perform BANKSUM. ) This also sets the content of 
SMODE to + O  which puts the computer in the back-up idle loop whenever SELF CHECK is 
entered. The job SHOWSUM begins by reserving the DSKY for use in 'the job. Bank 0 is 
then selected and all words in the bank are added together and the sum stored in SKEEP 1 
as  in ROPECHK. The difference occurs after the last word has been obtained at which 
time the subroutine SDISPLAY is performed. SDISPLAY puts the bank number in the 5 
low order bits and sets the DSPTABS to flash V05 N01, (display octal comp 1, 2,  3,  - 
specify address). The DSPTABS will then be set to display the bank sum, the bank 
number, and the bugger word in R1, R2, and R3 respectively. (The bugger word, also 
known as  CKSM, is the last word in each bank. The value of this word is chosen such that 
when added to all other words in the bank the resulting sum will be equal to, or  the com- 
plement of, the bank number. ) SHOWSUM then goes to sleep to await operator action. If 
the operator desires to have the next bank displayed he will key in  V33 ENTER (proceed 
without data). This will wake the sleeping job, increment the bank number and, providing 
the new bank number is less than 22, will obtain and display the information about the 
next bank. If the bank number is 22, it will be set to zero and the information for bank 0 
will be displayed, The cycle will continue as  long a s  the operator continues to key in 
V33 ENTER. Job SHOWSUM is terminated by keying in V34 ENTER (terminate). Upon 
termination of SHOWSUM the computer will not return to the self check option which it was 
performing when interrupted by V56 ENTER, but will continue in the back-up idle loop. 
In order to once again enter a meaningful SELF CHECK routine, SMODE must be loaded 
to the desired option, 

I :  

SOPTION 6 - This option performs an extensive check of the multiply arithmetic. 
First, a loop is set up which multiplies 37777 x (37777 through 00001). Each product is 
checked for accuracy by adding the upper product + lower product + 40000. This will 
result in a -0 which is then checked. Next, a loop is set up which multiplies -1 x 
(37777 through 00001). Each product is checked in two ways: 1) the upper product should 
be equal to -0; 2) the lower product plus the multiplier should also be equal to -0. The 
next two loops are identical to the first two except the multiplier and multiplicant are 
interchanged. 

In each loop a check is made between every multiply operation to make sure that a job 
of higher priority is not waiting. A t  the end of the last loop, control is transferred back 
to the SELF CHECK lead into check SMODE. 

SOPTION 7 - The divide capability is checked during this option. Several divide opera- 
tions are made and after each operation the quotient or  remainder or both are checked. 
After passing through the divide loop, the contents of SKEEP 4 are  incremented and i f  it 
is still not equal to 0 the loop is repeated. (SKEEP 4 is initialized to 73777. ) When 
SKEEP 4 becomes 0,  register SCOUNT +2 is incremented, after which control is trans- 
ferred back to SELF CHECK lead in to look at SMODE. SCOUNT +2 will contain the 
number of times the divide check option has been performed. 

4-26 



DSKYCHK - If the SMODE register contains k l l  the DSKYCHK subroutine will be entered 
after setting the contents of SMODE to + O .  DSKYCHK merely sets the contents of SKEEP 3 
to 00012 and schedules the task NXTNMBR on waitlist to be executed in 10 msec. After 
the delay, task NXTNMBR checks the contents of SKEEP 3 (which was initialized to 00012) 
and finding a value greater that + O  decrements SKEEP 3. DSPTRBS 0 through 10D are  
then set to display the contents of SKEEP 3 (00011) in decimal (9) in each DSKY digit loca- 
tion. This task will then reschedule itself (hXTNMBR) in the waitlist to be executed in 
5.12 seconds. '5 .12  seconds later NXTNMBR again checks SKEEP 3 ,  decrements it, sets 
DSPTABS 0 through 10D to display a decimal eight in each DSKY digit location, and 
reschedules NXTNMBR on waitlist. The process will continue until the contents of 
SKEEP 3 = + O .  SKEEP 3 will then be set  to 01, the VN flash and COMPUTER ACTIVITY 
lamps will be turned on, and the DSPTABS will be set to display a minus sign in R1, R2, 
and R3. Al l  digits will remain zeros from the previous DSPTAB contents. The next pass 
will set  SKEEP 3 - -0, SKEEP 2 = +1, and display a plus sign in R1, R2, and R3. A l l  
digits will remain zeros, The next pass will blank each DSKY digit location and the final 
pass through will turn off the VN flash and COMPUTER ACTIVITY lamps. After DSKY 
CHK, the computer will remain in the back-up idle loop until SMODE is loaded with a 
value other than + O .  

4-27 



n 
( ERRORS 1 
LJ 

w INCREMENT ERCOUKT 

c(SM0DE) 

0 CHECK 

I SAVE ST.\RTINC, ADD 
OF NEXT SOPTION 
(SOPTIONl) 

SAVE STARTING ADD 
OF NEXT SOPTION 

L 
OF HIGHEST HIGHER PRIORITY 

BEEN SCHEDL'LED? 

INCREMENT 

INCREMENT 
SCOUNT 

YES I 

c(SM0DE) = * 7 ' 
ROUTE TO THE 
DESIRED OPTION cfShfODE) = f IO 

AS SPECIFIED ny 

SET c(SM0DE) - +O 

17581 - I  

Figure 4-8. Self Check (Sheet 1 of 19) 

4-2 8 



A N D T C F E X C E P T T H E  
ADILIT" T O  TC F 

CHECK ALL PLILSES 01: CCS 
E S C E P T  RB \\'G. .\LJC! 
CIIECK: TS E.  CS SC, .IN11 I 
CS E. I 

I 
CHECK APILITY TO R E A l I  I 
CA E. MASF E.  S C l '  E, I 
DCS E. c.!. sc. d t . m  DC.? E. 

CHECK ABILITY TO RESTORE 
,K INTO \ I NSTRUCTIONS l3i\( 

E MEMORY. ALSO CIIECK I 

I I GOOD I 

RETLIRN T O  EXIT POINT ;c(SF..\IL); 
ANI, CONTINUE SELF CHECK. r """- Q 

I GOOI' 

0 ) I  
I 
I 

' I  
1 

I 
A 

17581-2 

Figure 4-8. Self Check (Sheet 2 of 19) 

4-29 



, BAD { FINISH CHECKING 
PULSES OF MASK 

FIMSH CHECKING PULSES 

ALSO CHECK ALL PULSES 

0 

0 

0 Q RETURN TO EXIT I POINT [ c(SFA1L) 3 
I AND CONTINUE I SELF CHECK 

I 

' I  
/i 

I 
I 

/ 1 
CHECK ALL PULSES OF 
DCS SC, DXCH SC, AND 
DCA SC. I 

I I 
I I 

CHECKTHATOVERFLOWIS 
LOST IN PROCESS OF GOING 
THROUGH L REG. ALSO 
CHECK THAT Q WILL HOLD 

I 
16 BITS. 

I 

I I GOOD 

CHECK OVERFLOW, UNDER- 
FLOW, END-AROUND-CARRY, 
AND SIGN CHANGE OF ADDER. 
ALSO CHECK: ADS SC WITH I 
OVERFLOW) AND TS A' 

I CHECK THAT AN INTER- / RUPT DOES NOT OCCIJR \" 
WHILE OVERFLOW OR 
UNDERFLOW IS IN THE 
A REG. ALSO CHECK THAT 
INHINT AND RELINT WORK 

~ ~ """ 

PROPERLY. 
I 

6 ERRORS 

I / 

6' SOPTION 

I 

I 
J 

/ 

\Figure 4-8. Self Check (Sheet 3 of 19) 

4-30 

17581 -3 



SOPTION \ 

1 

RETURN TO EXIT 
POINT [ c(SFAfL)] 
AND CONTINUE 
SELF CHECK 

CHECK ALL 
WRITE PULSES 

GOOD 

READ PULSES 1 CHECK ALL 
I 

I I GOOD -1 
I 

r..cLc 
/ 

ROR PULSES I 

I GOOD 

CHECK ALL 
WOR PULSES I 

'-"' 
CHECK ALL 
RAND PULSES 

I I GOOD 

I 

c, 1 

/ I 
BAD< WAND PULSES 

CHECK ALL . 
I GOOD 

CHECK ALL 
RXOR PULSES 

0 ERRORS 

1 I 

I758 1-4 
'Figure 4-8. e l f  Check (Sheet 4 of 19) 

4-3 1 



1 

I SET c(5KEEP 6 )  - 37777 AND 
c(SKEEP 7 )  - 40000 I 
(-5 IS C(SKEEP 6) YES 

= 00000 

I clSKEEP 7) 
INCREMENT I I : W E E P  6) -l]+ I t" 

CHECK 
FOR -1 

HAS A JOB OF 
HIGHER PRIORITY 
BEEN SCHEDULED 

IS c(BKEEP a) - 77777 

I I I DECREMENT 
c(8KEEP 6) 

17561-5 

Figure 4-8. Self Check (Sheet 5 of 19) 

4-32 



37776 I 
I 

* “““-4 

INCREMENT LAST 

BET UP MAX UNDER- 
FLaW Q U A N ” Y  CHECKED. 

c(SKEEP 6 )  

OVERFLOW 
QUANTITY 

Figure 4-8. Self Check (Sheet 6 of 19) 
4-33 

17861-6 



9 
I I SET c(EBANK) = 00000. 

(EBANK 0 SELECTED. ) 

3 SET c(SKEEP 7) = 01462. 

1 

4 01374 BEEN I 

SET c(SKEEP 7) 

INCREMENT c(SKEEP 7) 

b 

I 
.) 

0 LOOP 

17581-7 

Figure 4-8. Self Check (Sheet 7 of 19) 
4-34 



SAVE CONTENTS OF 
ADDRESSES X AND X+1. c (x) = CWEEP 711 

SET c(X) = X and 
c (x+ l )  = x+l 

1 
ADD c(X) TO COMPLEMENT 
OF c(X+l). CHECK FOR -1. 

I' SET c(X) AND 
C ( x + l )  = x+l 

ADD c ( x + l )  TO COMPLEMENT 
ERROM OF ~(y-). CHECK FOR -1. 

0 

I RETURN TO EXIT 
POINT [c(SFAIL)] 
AND CONTINUE I 

I SELF CHECK 

I 

0 
I 

RESTORE ORIGINAL CONTENTS & 
IN ADDRESSES X AND X + l  

HAS A JOB OF HIGHER 
PRIORITY BEEN SCHEDULED 

TO BANK 
BEING 
CHECKED 

17581-8 

,Figure 4-8. Self Check (Sheet 8 of 19) 
4-35 



ADD 00400 TO 

IS EBANK 3 
SELECTED 

n 
5 ,  6 O R 7  

+O CNTR 

HAS ADDRESS 01777 
BEENCHECKED 

BEENCHECKED 

HAS ADDRESS 01374 
BEENCHECKED 

Figure 4-8. Self Check (Sheet 9 of 19) 
4-36 

17581-9 



MISSING 
PAGE 

4-37 



v CHECK 

I SET c(EBANK) = 3 I 

PERFORM CS ON 
ADDIiESS 00061 

I THROUGH 00010 I 

m WRITE INTO ALL CYCLE 

I AND SHIFT REGISTERS. 
(ADDRESSES 00020 
THROUGH 00023. ) I 
1 

ADD ~ ( 0 0 0 2 0  THROUGH 
00023) + A CONSTANT. 
CHECK FOR -1 

I -l 

0 RETURN TO EXIT 
POINT c(SFAIL)] 
AND CONTINUE 

I SELF CHECK 

I 
I 
I 
I 
1 

J 
ADD NEW ~ ( 0 0 0 2 0  \ 
THROUGH 00025) + A 
CONSTANT. CHECK 
FOR -1 I 

INCREMENT I SCOUNT+l I 

0 17581-1 I 

,Figure 4-8. Self Check (Sheet 11 of 19) 
4-38 



SET c(SM0DE) - t o  

WITH PRIORITY OF 02 
SCHEDULE JOB.SHOWSUM 

VIA EXECUTIVE NOVAC 

* RESERVE DSKY 

e SET c(SKEEP 1) - 0 

OF BANK AND STORE 

OBTAIN NEXT WORD IN 
BANK. ADD TO c(SKEEP 1) 
AND STORE THE SUM IN 
SKEEP 1 

I ROPECHK A 

HAS A JOB OF NO 
HIGHER PRIORITY B 
BEEN SCHEDULED 

L 

JOB OF 
HIOHEST 

t/ PRIORITY 

+ O  

17581-12 

Figure 4-8. Self Check (Sheet 12 of 19) 
4-39 



i 

SET c(SKEEP 1 
= I c(SKEEP 1) 1-1 PUT i3.4NK NUMBER 

IN 5 LOW ORDER BITS 

PUT BANK NUMBER 
IN 5 LOW ORDER 
BITS 

R 1  = BANK SUM 

ADD c(SKEEP 1) TO 
COMPLEMENT OF 
BANK NUMBER 

TERMINATE PROCEED I WITHOUT 

0 r 

RETURN TO  EXIT^ 

I 

POINT [c(SFAIL)]I PROCEED 
AND CONTINUE 
SELF CHECK I TERMINATE 

17581 - 13 



3 

01 ERRORS 

NO 

MULTIPLY: 
37'777 X c (SKEEP 2) DECREMENT c (SKEEP 2 )  

ADD: U P P E R  PRODUCT + 

LOIVER PRODUCT +40000 HAS A JOB O F  
HIGHER PRIORITY 
BEEN SCHEDPLED 

NO 

I 
I I MULTIPLY: I I I 1-1 

-1 X c(SKEEP 2)  DECREMENT c(SKEEP 2)  

I W 
RETURN TO EXIT POINT 
[ c ( S F A I L ) ]  AND CONTIh'l'E 
S E L F  CHECK 

r----- 
I 

ADD: LOWER HAS A J O B  OF 
PRODUCT + c (SKEEP 2)  HIGHER PRIORITY 

BEEN SCHEDULED 

-0 

17581-14 

Figure 4-8. Self Check (Sheet 14 of 19) 

4-41 



0. ERRORS 

AGAIN 

SET c(SKEEP 1) - 37777 
b I 

4 
v 

YES 

MULTIPLY: 1 
c(SKEEP 1) X 37777 I 

DECREMENT c(SKEEP 1) 

A D D  UPPER PRODUCT + 

LOWER PRODUCT +40000 NO 

HAS A JOB OF 
HIGHER PRIORITY 
BEEN SCHEDULED 

AND CONTINUE SELF CHECK 

~ 

I c I I 

4 I NO 

.r I I 

I 
I 

MULTIPLY: 
c(SKEEP 1) X -1 I 

0 NO 

HAS A JOB OF 
HIGHER PRIORITY 
BEEN SCHEDULED ADD: XDWER 

PRODUCT + c(SKEEP 1) 

Figure 4-8. Self Check (Sheet 15 of.19) 
4-42 



+ SET c(8KEEP 4) - 73777 

L - " - J l  INCREMENT c(SKEEP 4) 

I 
(37774)  IN SKEEP 7  

RETURN TO EXIT POINT :cfSFAIL)] 
AND CONTINUE SELF CHECK """- 

I 

REMAINDER 

DIVIDE: 
1'1777 40000 

A I  
ADD: QUOTlENT 

A i  DIVIDE: 
00000 3 7 7 7 7  

20000 

* I 
STORE QUOTIENT 
(40003) IN SKEEP 6 

CHECK 
FOR -0 I 

REMAINDER A 

00000 57777 

ADD: QUOTIENT 
(37774)  + cfSI(EEP 6 )  

/ I  
I 

klgure 4-8. Self Check (Sheet 16 of 19) 
4-43 



0 ERRORS 

4 DIVIDE: 17777 20000 37777 

ADD: QUOTIENT 
(37777) + 40000 

ADD: REMAINDER 
(17777) + 67777 

0 
0 

RETURN TO EXIT POINT [c(SFAIL)] 
AND CONTINUE SELF CHECK r 

ADD: REMAINDER 
(37776) + 40000 

I 
/ 1 

I 
I 

I 
I 
I 

0 
/ 

/ 

DIVIDE: 
37776 

ADD: COMPLEMENT 
OF QUOTIENT 
(40000) + 37776 

FOR -1 

DIVIDE: 
77777 00000 

I 
CJ 

/’ I 
I 
I 

STORE QUOTIENT 
(37777) IN SKEEP 7 

DIVIDE: 
77777 00000 

77771 I 
I I 

STORE QUOTIENT 
(40000) IN SKEEP 6 

A I 
ADD: QUOTIENT 
(40000) + c(SKEEP 7) 

I 
FOR -0 I 

/ 

CHECK 
REMAINDER &’ 

I 
I 

/ 

17581 -17 

IFigure 4-8. Self Check (Sheet 17 of 19) 
4-44 



DIVIDE: 
00000 77777 

r 
I 

EIETURN TO EXIT POINT [ c(SFAIL)] 
AND CONTINUE SELF CHECK 

I 
/I 

/ I  

/ I 

/ I  

/ / J  
REMAINDER 

/ I  

I 
DIVIDE: I 
00000 77777 

77777 
I 

* 

/ I  

/ 

DIVIDE: I 
00000 77777 

77777 I 
I 

* 

(37777) + c(SKEEP 6) 

CHECK 
FOR -0 

/ 
/ 

REMAINDER 
-0 

"""- -Q / 

c(SKEEP 6) + 37776 
ADD: 

I 

CHECK 
FOR -1 

HAS A JOB OF 
HIGHER PRIORITY 
BEEN SCHEDULED 

INCREMENT 
SCOUNT+P 

Figure 4-8. Self Check (Sheet 18 of 19) 

4-45 



SET c(SKEEP 3) - 00012 

"NXTNMBR" ON WAIT- 
SCHEDULE TASK 

LIST TO BE EXECUTED 
IN 10 MS 

I 

CHECK > t o  
c(SKEEP 3) 

+ O  

I 
CHECK > t o  

c(SKEEP 3) 

+ O  

SET c(SKEEP 3) SET c(SKEEP 3) 
c(SKEEP 3) 
DECREMENT 1 I 

I 
I 

I = 00001 I SET c(SKEEP 2) SET c(SKEEP 2) 
= 00001 

SET DSPTABS 1, 4 ,  
AND 6 TO DISPLAY 
PLUS SIGN IN R1,  R2, 
AND R3. (DIGITS WILL 

DSPTAB CONTENTS 
FROM PREVIOUS 
REMAJN r?LL ZEROS 

TURN OFF VN FLASH 
AND COMPUTER 
ACTIVITY LAMPS * 

I I SET c(SKEEP 2)  - 00000 

SET DSPTABS 0 THROUGH 

DSKY DIGIT LOCATION 
10D TO BLANK EACH 

v 

. 

AND COMPUTER 

AND 5 TO DISPLAY 
MINUS SIGN IN R1. 

WILL REMAIN ALL 
R2, AND R3. (DIGITS 

ZEROS FROM PREVIOUS 
DSPTAB CONTENTS 

* 
SET DSPTABS 0 THROUGH 
10D TO DISPLAY c(SKEEP 3)  

DSKY DIGIT LOCATION 
IN DECIMAL IN EACH 

* 
SET DSPTABS 0 THROUGH 
10D TO DISPLAY c(SKEEP 3)  

DSKY DIGIT LOCATION 
IN DECIMAL IN EACH 

4 

"NXTNMBR" ON WAIT- 
SCHEDULE TASK 

IN 5 . 1 2  SECONDS 
LIST TO BE EXECUTED 

17581-19 

\Figure 4-8. Self Check (Sheet 19 of 19) 
4-46 



APPENDIX A 

COMPUTER PROGRAMS 

A. 1 DESCRIPTION OF COMPUTER INSTRUCTIONS 

Instructions, which are directions given to perform specific operations, are the same for 
CMC and LGC. Together with data addresses, they constitute the building blocks of a 
program. Programs are  sequential lists of instruction words. There are  two general 
categories of inetructions, machine and interpretive. Several types of instructions used 
In the LGC may be categorized as follows: 

MACHINE (56) 

REGULAR (42) 

BASIC (15) 

EXTRACODE (12) 

CHANNEL (7) 

SPECIAL (8) 

INVOLUNTARY (9) 

INTERRUPT (2) 

COUNTER (7) 

PERIPHERA L (5) 

INTERPRETIVE 

The machine instructions can be interpreted and executed directly by using the sequence 
generator to control the LGC operation. The interpretive instructions are a programmer's 
convenience and must be interpreted under program control, converted to machine instruc- 
tions and then executed as machine instructions. Table A-1 lists the machine instructions 
alphabetically and gives a brief description of each. The reader will find it to his advantage 
to refer back to this table once he has gained a greater familiarity with the LGC. The 
following symbols a re  used in table A-1, 

K represents any address in the central processor, erasable memory o r  fixed 
memory. 

F represents an address in fixed memory only. 

0 E represents an address in the central processor or erasable memory. 

H represents any channel address. 

A- 1 



C represents any counter address. 

A represents the A register on the central processor. 

L represents the L register in the central processor. 

c(K) represents the contents of K, i. e . ,  the data located in address K. 

1, I + 1, I + 2 represents the addresses of successive instruction words stored 
in memory. 

c (I), C (I + l), C (I + 2) represents the contents of successive instruction words 
stored in memory. 

A. 1 .1  MACHINE INSTRUCTIONS. The LGC has three classes of machine instructions: 
regular, involuntary, and peripheral. Regular instructions are  programmed and a re  
executed in whatever sequence they have been stored in memory. Involuntary instruc- 
tions (with one exception) are not programmable and have priority over regular instruc- 
tions: no regular instruction can be executed when the LGC forces the execution of an 
involuntary instruction. The peripheral instructions are used during ground testing 
when the LGC is connected to the CTS o r  PAC: the LGC cannot perform any program 
operation during a peripheral instruction. 

A. 1.2 REGULAR INSTRUCTIONS. There a re  four types of regular instructions: basic, 
channel, extracode, and special. The difference between the regular instructions is 
directly related to the way in which the LGC interprets an instruction word. Instruction 
words stored in memory are  called "basic instructions words" and consist of a three 
bit order code and a twelve bit address code. The order code defines an operation and 
the address code defines a location. 

The contents of the SQ register will determine what instruction the LGC will perform. 
The SQ register reflects that data transferred into it from memory. The SQ register 
consists of six bits and an EXTend bit (figure A-l )*  A binary point is assumed to be 
located between bits thlrteen and twelve. When an instruction word is transferred from 
memory to the SQ register, bfts 15 through 10 of the word in memory are transferred 
to bits 16 and 14 through 10 of the SQ register (figure A-2). In the following paragraph, 
however, only the transfer of bits 15, 14 and 13 from memory to bits 16, 14 and 13 of 
the SQ register will be considered. 

*\ BINARY POINT 

Figure A-1. SQ Register 

A-2 



Table A-1. Machine Instructions, Alphabetical Listing (Sheet 1 of 8) 

Symbolic 
Instruction 
Word 

AD K 

ADS E 

LUG E 

BZF F 

BZMF F 

CA K 

Order Code 

, 06.  

02.6 

12.4  

11.2 
11.4  
11.6 

16.2 
16.4  
16.6 

03. 

Description 

Basic Instruction: add c(K) to c(A); stores 
result in A; takes next instruction from I + 1 
where I is location of AD K. 

Basic Instruction: ad&, c(A) to c(E) and 
stores result in both A and E;  takes next 
instruction from I + 1 where I is location of 
ADS E. 

Extra Code Instruction: adds +1 to c(E), 
if  c(E) is posltlve and -1 if c(E) is negative; 
stores result in E; takes next lnstructfon 
from I + 1 where I is location of AUG E. 

NOTE: AUG, DIM and INCR are slightly 
. modified counter increment sequences. 

Accordingly, if  one of this group over- 
flows when addressing a counter for which 
overflow (during involuntary increment- 
ing) is supposed to cause an interrupt, the 
interrupt will occur. It should be noted 
that all three of these instructions unlike 
the increment sequences, always operate 
in one's complement, even when address- 
ing CDU counters, 

Extra Code Instruction: takes next instruc- 
tion from F if c(A) is a; otherwise takes next 
instruction from I' + 1 where I is location of 
BZF F. 

Extra Code Instruction: takes next instruc- 
tion from F if c(A) is +O o r  negative; other- 
wise takes next instruction from I + 1 where 
I is location of BZMF F. 

Basic Instruction: clears c(A) and copies c(K) 
into A; takes next instruction from I + 1 where 
I is location of CA K. 

Execution 
Time in 
MCTls 

2 

2 

2 

1 if c(A) 
is a; 
otherwise 
2 

1 i f  c(A) 
is +O or  
negative, 
otherwise 
2 

2 

A-3 



Table A-1. Machine Instructions, Alphabetical Lirrrting ( s h e e t  2 of 8) 

Symbolic 
Instruction 
word 

CCS E 

CS K 

CYL 

CYR 

DAS E 

DCA K 

Order Code 

01.0 

04. 

,0022 

,0020 

02.0 

13. 

Description 

Basic instruction: if c(E) is ncmzero and p o i -  
tive, takes next instruction €torn I + 1 where I 
is location of CCS E, adds -1 to c(E) andstoree 
result in A. If c(E) is +Os take0 next inutruc- 
tion from I + 2 and sets c(A) to +O.  If c(E) is 
nonzero and negative, takes next instruction 
from I + 3, adds -1 to the abeolute value of the 
c(E) and stores result in A. If c(E) ie -0, 
takes next instruction from I + 4 and seta c(A) 
to +o. 
Basic Instruction: cleara c(A) and copies cCK) 
into A; take8 next instruction from I + 1 where 

Special Instruction: cycles quantity, which is 
entered into location 0022, one place to left. 

Special Instruction: cycles quantity, which is 
entered into location 0020, one place to right, 

-sic Instruction: adds c(A, L) to c(E, E + 1); 
stores result in E and E + 1; sets c(L) to +O and 
sets c(A) to net overflow if address E is not 
00008. Net overflow is +1 for positive overflow 
-1 for negative overflow, othelwiee c(A) is set 
to +O. Takes next instruction from I -c 1 where 
I is location of DAS E. 

Note: DAS A doubles the content6 of the 
double precision accumulator - implied 
address code DDOUBL asaemblee as DAS 
A. Since the hardware mwt operate on 
the low order operands first, consider 
D M  as the operation code 20001 to which 
the address E is, added to for the instruc- 
tion. 

Extra Code Instruction: copies c(K, K + 1) into 
A and L; takes next instruction from I + 1 wherc 
I is location of DCA K. 

A-4 



Table A-1. Machine Instructions, Alphabetical Listing (Sheet 3 of 8) 

Symbolic 
Instruction 
word 

DCS K 

DIM E 

DINC C 

DV E 

DXCH E 

EXTEND 

FETCH K 

~ ~~ 

Order Code 

14. 

12.6 

None 

11.0 

05.2  

00.0006 

None 

Description 

Extra Code Instruction: copies c(K, K + 1) 
into A and L; takes next instruction from 
I + 1 where I is location of DCS K. 

Extra Code Instruction: adds -1 if c(E) is 
nonzero and positive and +1 if c(E) is non- 
zero and negative; stores result in E; if c(E) 
is a, c(E) is not changed; takes next instruc- 
tion from I + 1 where I is location of DIM E. 
See NOTE under AUG. 

Counter Instruction: adds +1 to c(C) if c(C) 
is negative: adds -1 to c(C) if c(C) is positive; 
provildes no change if  c(C) 'is & O m ;  stores result 
in C,  delays program execution for 1 MCT. 

Extra Code Instruction: divides c(A, L) by 
c(E); stores quotient in A; stores remainder 
in L; takes next instruction from I + 1 where 
I is location of DV E. 

NOTE: The signs of the double length 
dividend in A & L need not agree. The 
net signof the dividend is the sign of c(A) 
unless c(A) is ~ 0 ,  in which case it is the 
sign of c(L). The remainder bears the 
net dividend sign, and the quotient sign 
is determined strictly by the divisor and 
net dividend signs. 

Basic Instruction: exchanges c(E, E + 1) with 
c(A, L); takes next instruction from I + 1 wher 
I is location of DXCH E. 

Special Instruction: Take the next instruction 
from I + 1, where I is the EXTEND instruc- 
tion and execute it as an extracode instruction. 
If I + 1 is INDEX (full operation code 14, the 
following instruction will also be executed as 
an extracode. 

Peripheral Instruction: reads and displays 
c(K) as binary numbers on CTS o r  PAC where 
K' is address supplied by CTS or  PAC. 

Execution 
Time in 
MCT '8 

3 

A-5 



Table A-1. Machine Instructions, Alphabetical Listing (Sheet 4 Of  8) 

- 

3 y m  bo1 ic 
hstruction 
Word 

EDOP 

COJ 

[NCR E 

INHINT 

INOT LD H 

INOTRD H 

LXCH E 

MCDU C 

Order Code 

.0023 

00. 

02.4 

00.0004 

None 

None 

02.2 

None 

~ 

Description 

9ecia.l Instruction: shifts quantity, which 
.S entered into location 0023, seven places 
;o left. 

hterrupting Instruction: transfers control 
;o instruction stored in location 40008 and 
?roceeds from there. 

Basic Instruction: adds + 1 to c(E); Stores 
result in E ; takes next inStr'UCtiOn from f + 1 
where I is location of INCR E. See NOTE 
under AUG. 

Special Instruction: Inhibit program interrupts 
until a subsequent RELINT.. Take the next 
instruction from I + 1 where I was INHINT. 

NOTE: The inhibition set by INHINT and 
removed by RELINT in entirely inde- 
pendent of the one set by an interrupt and 
removed by a RESUME. 

Peripheral Instruction: loads data supplied by 
CTS or  PAC into location H where H is chan- 
nel -address also supplied by CTS o r  PAC. 

Peripheral.Instruction: reads and displays 
c(H) as binary number on CTS or  PAC where 
H' is channel kddress supplied by CTS o r  PAC. 

Basic Instruction: exchanges c(E) with c(L); 
takes next instruction from I + 1 where I is 
location of LXCH E. 

Counter Instruction: adds -1 (two's comple- 
ment) to c(C). NOTE: Incrementing in two's 
complement modulator notation transfers octal 
40000 to 37777 and 00000 to 77777 and is other- 
wise like one's complement. PCDU and MCDU 
replace PINC and MINC for counters 0032 
through 0036. 

Execution 
Time in 
MCT's 

2 

2 

1 

1 

1 

2 

1 

A-6 



Table A-1. Machine Instructions, Alphabetical Listing (Sheet 5 of 8) 

Symbolic 
Instruction 
Word 

MINC C 

M P  K 

MSK K 

MSU E 

NDX K 

NDX K 

PCDU C 

Order Code 

None 

17. 

07. 

12.0 

05.0 

15. 

None 

Description 

Counter Instruction: adds -1 to c(C); delays 
program execution for 1 MCT. If negative 
overflow occurs, C(C) is set to -0.  

- 

Extra Code Instruction: multiplies c(A) by 
c(K); stores result in A and L; c(A, L) agree 
in sign; takes next instruction from I + 1 
where I is location of M P  K. A zero result 
is positive unless c(A) = * O  and c(K) is non- 
zero with the opposite sign. 

Basic Instruction: AND's c(A) with c(K); 
stores result in A; takes next instruction 
from I + 1 where I is location of MSK K. 

Extra Code Instruction: forms signed one's 
complement difference between c(A) and 
c(E) where c(A) and c(E) a r e  unsigned (modu- 
lar  o r  periodic) two's complement numbers; 
stores result in A; the method is to form the 
two's complement difference, to decrement it 
i f  it is negative, and to take the overflow- 
uncorrected sum. as the result; takes next in- 
struction from I + 1 where I is location of 
MSU E. 

Basic Instruction: adds c(K) to c(I + 1) where 
I is location of NDX E;  takes sum of c(K) + 
C(I + 1) as next instruction. INDEX 0O1i is an 
implied instruction to resume an interrupted 
program. 

Extra Code Instruction: adds c(K) to c(I + 1) 
where I is location of NDX K; sets extra code 
switch; sum of c(K) + c(I + 1) becomes an 
Extra Code Instruction which is taken as next 
instruction. This INDEX will not act as a 
RESUME. 

Counter Instruction: adds +1 (two's comple- 
ment) to c(C); delays program execution for 
1 MCT. See NOTE under MCDU. 

Execution 
Time in 
MCT's 

A-7 



Table A-1. Machine Instructions, Alphabetical Listing (Sheet 6 of 8) 

Symbolic 
Instruction 
Word 

PINC C 

QXCH E 

RAND H 

READ H 

ROR H 

RE LINT 

RESUME 

RUFT 

Order Code 

None 

12.2 

10.2 

10.0 

10.4 

00.0003 

05.00 17 

10.7 

Description 

Counter Instruction: adds +1 to c(C); delays 
program execution for 1 MCT. If positive 
overflow occurs, the counter is set to +O and 
an interrupt is set up if the counter is T3, 
T4, T5 o r  set up a PINC for T2 if the 
counter was T1. 

Extra Code Instruction: exchanges c(E) with 
c(&); takes next instruction from I + 1 where 
I is location of QXCH E. 

Channel Instruction: AND's c(H) with c(A); 
stores result in A;  takes next instruction 
from I + 1 where I is location of RAND H. 

Channel Instruction: copies c(H) into A; takes 
next instruction from I + 1 where I is location 
of READ H. 

Channel Instruction: Inclusive OR's c(H) with 
c(A) ; stores result in A; takes next instruction 
from I + 1 where I is location of ROR H. 

S ecia.1 Instructions: Removes program 
-bits. Allows interrupts after 
this instruction subject to the restriction 
that an interrupt cannot occur while there 
is plus o r  minus overflow in A. 

Special Instruction: takes next instruction 
from return address (location of which ad- 
dress is stored in location 0017). This 
allows the resumption of the interrupted 
program. 

Interrupting Instruction: takes next instruc- 
tion from address supplied by Interrupt Prior- 
ity Control; stores c(B) (instruction that was 
to be executed) in location 00178; stores 
c(Z)  = I in location 00158 where I is assigned 
location of instruction stored in 0017. This 
instruction is for  machine checkout only. 

Execution 
Time in 
MCT's 

A- 8 



Table A-1. Machine Instructions, Alphabetical Listing (Sheet 7 of 8) 

Symbolic 
Instruction 
Word 

RXOR H 

SHANC C 

SHINC C 

SR 

STORE E 

SU E 

TC K 

Order Code 

10.6 

None 

None 

.002 1 

None 

16.0 

00. 

Description 

Channel Instruction: forms the exclusive OR 
of c(H) and c(A); stores result in A; takes next 
instruction from I + 1 where I is location of 
RXOR H. 

Counter Instruction: doubles c(C) and adds 
+1; stores result in C ; delays program execu- 
tion for 1 MCT. This action amounts to shift- 
ing c(C) one digit to the right and adding +l. 

NOTE: SHANC and SHINC are  used to 
convert incoming serial bit streams into 
words for parallel access. 

Counter Instruction: doubles c(C); stores re- 
sult in C; delays program execution for 1 
MCT. This action amounts to shifting c(C) 
one digit to the right. See NOTE under 
SHANC. 

Special Instruction: shifts quantity, which is 
entered into location 0021, one place to right. 

Peripheral Instruction: data supplied by CTS 
or  PAC is stored in location E where E is 
address supplied by CTS o r  PAC; delays pro- 
gram execution for 2 MCT'e. 

Extra Code Instruction: subtracts c(E) from 
c(A); stores result in A; takes next instruc- 
tion from I + 1 where I is location of SU K. 

Basic Instruction: takes next instruction 
from K; stores I + 1 in Q where I is location 
of TC K; if K is 0006 (EXTEND), sets extra 
code switch and takes next instruction from 
I + 1; if K is 00048 (INHINT), sets inhibit inter- 
rupt switch and takes next instruction from I + 1: 
if K is 00038 (RELINT), resets inhibit interrupt 
switch and takes next instruction from I + 1. 

Execution 
Time in 
MCT's 

2 

1 

1 

2 

2 

1 

A-9 



Table A-1. Machine Instructions, Alphabetical Listing (Sheet 8 of 8) 

Symbolic 
Instruction 
word 

TCF F 

TCSAJ K 

TS E 

WAND H 

WOR H 

WRITE H 

XCH E 

Order Code 

01.2 
01.4  
01.6 

05.4 

10.3 

10.5 

10. 1 

0 5 . 6  

Description 

pasic Instruction: takes next instruction 
from F. Does not change the contents of Q. 

Peripheral Instruction: takes next instruc- 
tion from K where K is address supplied by 
CTS o r  PAC. 

" 

Basic Instruction: if c(A) is not an overflow 
quantity, copies c(A) into E and takes next 
instruction from I + 1 where I is location of 
TS E;  if c(A) is a positive overflow quantity, 
copies c(A) into E,  sets c(A) to +1, and takes 
next instruction from I + 2; if c(A) is a nega- 
tive overflow quantity, copies c(A) into E, 
sets c(A) to -1, and takes next instruction 
from I + 2. 

Channel Instruction: ANDts c(H) with c(A); 
stores result in H and A; takes next instruc- 
tion from I + 1 where I is location of WAND 
H. 

Channel Instruction: Inclusively OR's c(H) 
with c(A); stores result in H and A; takes 
next instruction from I + 1 where I is loca- 
tion of WOR H. 

Channel Instruction: copies c(A) into H; takes 
next instruction from I + 1 where I is location 
of WRITE H. 

Basic Instruction; exchanges c(A) with c(E); 
takes next instruction from I + 1 where I 
is location of XCH E. 

Execution 
Time in 
MCTts 

1 

2 

2 

A- 10 



I I I I l I I I I l I l  , INSTRUC- 
TION 
WORD IN 
MEMORY 

v v v  v v v  
16 14 13 12 11 10 

PROGRAM ACTION 

SQ REGISTER 

Figure A-2. Memory to SQ Register Transfer 

The three bit order code in the memory basic instruction words has a capability of 
uniquely deflning eight operations: To increase the number of operations defined by the 
SQ register, bit EXT (extend) is made a 1 o r  0 under program control, therefore, bits 
EXT, 16, 14 and 13 of the SQ register define sixteen operations. 

Note the order codes in column 2 of table A-1. These order codes are determined, in 
most cases, by the contents of the SQ register. Figure A-3 shows how the order codes 
in table A- 1 are  related to the actual contents of the SQ register. The order code 
defined by figure A-3 is TS E. 

In table A-1, the instructions can be categorized into three distinct groups by their 
listings in the order code column. 

a. Those that list 'fNone.fl 

b. Those that list four digits to the right of the binary point. 

C. Those that list two o r  three digits with the binary point written to the right 
of the second digit. 

Group a contains the counter and peripheral instructions. There are no order codes 
associated with these instructions. 

Group b contains the special instructions that are address dependent basic instructions. 
Their order codes are, in part, determined by bits 1 through 12. Those special instruc- 
tions with no digits to the left of the decimal point can be combined with any basic 
instruction order code. Those with digits to the left of the decimal point are combined 
with that basic instruction whose order code appears to the right of the decimal point. 

Group c contains the basic, extracode and channel instructions, i. e., all the regular 
instructions with the exception of the special instructions. Also included in this group 
a re  the two interrupt instructions; these are regular instructions. 

A-11. 



Note that the instructions in this group may or  may not have a digit to the right of the 
decimal point. When there is a digit to the right of the decimal point, it is determined 
by bits 11 and 12 or  bits 10, 11 and 12 of the SQ register. When bits 11 and 12 are 
necessary to extend the order code field, their configuration is called a "quarter code." 
When bits 10, 11 and 12 a r e  necessary to extend the order code field, their configuration 
is called an "eighth code. 11 Table A-2 shows the configuration of the various quarter and 
eighth codes associated with this group. Note that there are two ways of defining a zero 
o r  an even digit to the right of the decimal point. Observe instructions CCS E and TCF 
F in table A-1. These instructions a re  identical if only the digits to the left of the 
decimal point are considered. There, two instructions can be distinguished, however, 
if bits 11 and 12 of the SQ register a r e  observed. Note that the c~n ten t  of bit 10 in 
register SQ is irrelevant because only four cases have to be distinguished and, conse- 
quently, a quarter code is sufficient to define the necessary operation. Now observe the 
instruction in table A-2 which have digits 1 and 0 to the left of the decimal point in the 
order code column. There a re  eight of these instructions and to differentiate between 
them, bits 10, 11 and 12 of the S Q  register a r e  necessary because eight cases must be 
differentiated. If just bits 11 and 12 were used, only four cases could be distinguished. 

16 14 13 12 11 10 

1 CONTENTS OF SQ REGISTER X 0 1 1 0 

u u  
0 5 4 

X SIGNIFIES A 1 OR 0 

Figure A-3. Order Code Determination 

Basic instructions can be differentiated from extracode and channel instructions by the 
left hand digit of the order code, If bit EXT in the SQ register is a 0 ,  then the left hand 
digit is a zero and the instruction is a basic instruction. If bit EXT is a 1, then the left 
hand digit is a one and the instruction is an extracode or channel instruction. 

A. 1.3 INVOLUNTARY INSTRUCTIONS. The involuntary instruction class contains two 
types of instructions - interrupt and counter. The interrupt instructions use the basic 
instruction word format just as  the regular instructions do. However, the interrupt 
instructions ace not entirely programmable, The contents of the order code field and the 
address field a re  supplied by computer logic rather than the program. The counter 
instructions have no instruction word format. Signals which function as a decoded order 
code specify the counter instruction to be executed and the computer logic supplies the 
address. The address for these instructions is limited to one of 29 counter locations in 
memory. 

There a r e  two interrupt instructions. One instruction initializes the computer when 
power is first applied and when certain program traps occur. The other interrupt 
instruction is executed at regular intervals to indicate time, receipt of new telemetry o r  
keyboard data, o r  transmission of data by the computer. This interrupt instruction may 
be programmed to test the complter. \ 

A- 12 



I EIGHTH OR QUARTER 
CODES I t 

EIGHTH 

QUARTER 

EIGHTH 

EIGHTH 

QUARTER 

EIGHTH 

EIGHTH 

QUARTER 

EIGHTH 

EIGHTH 

QUARTER 

EIGHTH 

a 0  

00 

01 

* 2  

. 2  

03 

. 4  

, 4  

. 5  

. 6  

. 6  

. 7  

SQ REGISTER 
BITS 

12 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

- 
11 

0 

0 

0 

1 

1 

1 

0 

0 

0 

1 

1 

1 

- 

- 

- 
10 

0 

X 

1 

0 

X 

1 

0 

X 

1 

0 

X 

1 

- 

- 
X stands for a 1 or  0 

Table A-2. Quarter and Eighth Codes 

There a re  several counter instructions. Two instructions will either increment o r  
decrement by one the content of a counter location using the one's complement number 
system, Two other instructions perform the same function using the two's complement 
number system. Certain counter instructions control output rate signals and convert 
serial telemetry data to parallel computer data. 

A. 1.4 PERIPHERAL INSTRUCTIONS. There are two types of peripheral instructions. 
One type deals with memory locations and the other type deals with channel locations. 
The peripheral instructions are  not used when the computer is in the spacecraft. They 
a r e  used when the computer is connected to peripheral equipment during subsystem and 
preinstallation system testing. The peripheral instructions are not programmable and 
a r e  executed when all computer program operations have been forcibly stopped. These 
instructions are used to read and load any memory or channel location and to start the 
computer program at any specified address. The peripheral instructions and counter 
instructions are processed identically. 

A- 13 



A. 1.5 INSTRUCTION DATA FLOW. Examples of the instruction data flow are illus- 
trated on the subinstruction flow charts ADO, STD2, RSM3, and NDXO, figures A-4, 
A-5, A-6 and A-'7, 

A. 1.6 INTERPRETIVE INSTRUCTIONS. Interpretive instructions, a programmer's 
convenience and a means of saving memory storage area, must be interpreted under 
program control, converted to machine instructions and then executed as machine 
instructions. The coding into interpretive instructions of routines which contain double 
precision, triple precision, vector, and vector matrix operations results in a con- 
siderable saving in program storage area in fixed memory. This saving is achieved at 
the expense of computer operating speed; however, when operating in basic machine 
language the computer operates much faster than the equipment with which it interfaces. 
Since most of the PGNCS problems the computer i s  required t;, solve involve complex 
mathematical equations, the use of interpretive instructions for vector matrix algebra 
and complex differential calculus is a definite asset. Interpretive instructlone are 
shown in table A-3. 

A- 14 



F U  t 
CY 025252 I 

I 
I 
I 
I 
I 

4 25252 

CW 

S I213 ws 4 oca0 

I 
I 

I 

a oco1213 W G  000000 4 02.5252 4 t R G f  

I 
W G  021252 6 025252 

I J 
I 

0 O C O l Z l 3  W O  025252 urn 116 025252 

I I 
I 

r 

4 

RSC 1 L 

O O O l O i  nsc 1 WI C25354 

a 
RSI: + I 

I I 
Z O C 0 6 C O  R S C  6 R Z  ooocco I 

I 
! 
1 

U RL, LC25154 000660 

'I 000657 WV*025252 

X 000000 A2X 0000102 

CI I 0 

iTAGE 
: O U N T E R  
5 S E T  

RSC IS 
I N M l l l l T E D  
BY ADDRESS 

ro ooo 1213 INS 

F I X E D  ST2 SETS 
MEMORY STAGE 
STROBE IS COUNTER 
INMIBITED TO 010 
BY ADDRESS 
1213 I N S  

Figure A-4. Subinstruction ADO, Data Transfer Diagram 

A- 15 



FM ? 

028007 A 26077 EM 
1 

I 
CH ! 

I WSt6077 , 
S 0660 

I 1 J I 

I 
1 

G 025282 W G ~ O O O O O O  026077 4 0026077 1 1 I I 1 1 
I 
I 

T 
I 

8 020252 I R B ?  
I 

1 
L 

R I C  a 
Rac + 

1 

TIME I 2 3 4 5 6 7 e 9 IO I I  12 
S T A G E  CI N l S O  FIXED 
COUNTER S E T S  C A U S E S  MEMORY 
SET CARRY R O  A N D  
010 

STROOE IS 
FLIP WSO A T  INHIOITED 
FLOP TIME T Z .  BY A D D R E S S  

0000 IN S RSC la 
INHIBITED 

0660 IN S 
BY ADDREIS  

b 

17636 

Figure A-5, Subinstruction STDB, Data Transfer Diagram 

A- 16 



+ 
FM 

EM 31416 24145 

I 

CH I 
I 1 I 

I 
031416 Wf wO+024l45 024148 

U 001014 

Y ooma 
I 

x 

1 CI 

000000 

L 

WSO 0244 

T I M E  I 2 3 4 5 6 7 8 9 IO I I  12 
STAOF R I B  NI80 
COUNTER PLACES GENERATCS 
IS SET OOOOlS R B  A N D  S Q  
TO 01: ON AT TIME 12- 

WRITE RSC IS 
LINES INHIBITED 

COlJ IY s 
8 f ADDRESS 

40727 

Figure A-6. Subinstruction RSMS, Data Transfer Diagram 

A- 17 



J 

FM 

EM 924146 I & 2414 

CH 

I 
I 

T 

I 
1 

s I US4 I O 6 4  0017 
c 

I 
I 

G OSOQIT w04000000 + O S 4 1 4 5  
WQt054140 

4024140 
I I 

I 
I 
I 

B 050317 

I 
P 

L 

R S d  

R S C b  0 

R S C I  

1 

1 
I 

1 

001064 RSCA R Z b 0 0 1 0 6 4  

> 

u 001064 

y 001063 

x 000000 

I 2 3 4 5 6 7 8 9 IO I 1  
wsc IS TRSN SETS FIXED ST1 S E T S  

COUNTER INHIBITED S R Q E  MEMORY 
IS S E T  BY AODRESS COUNTER S T R O B E  IS 

BIT I OF 
' STAQE 

TO 000 0017 IN S 
SINCE BYAOORESS 
TO 010 I N H I B I T E D  

c ( S )  IS 0017 0017 IN S 

COUNTER 

IN 011 
R E S U L T I N G  

40?26 

Figure A-7. Subinstruction NDXO, with Implied Address Code RESUME, 
Data Transfer Diagram 

A- 18 



Table A-3. Interpretive Instructions (Sheet 1 of 14) 

Detailed Description of Operation Codes with Probable Average 
Execution Times. 

I A. Store, Load, and Push-Down Instructions. 

STORE X Store MPAC .62  m. s .  

D(MPAC), T(MPAC) or V(MPAC) replace D(X), T(X),or V(X), 
respectively. X may be indexed or  direct. 

STODL X Store MPAC 
Y and re-load in DP 1.24 m. s. 

D(MPAC), T(MPAC) or  V(MPAC) replace D(X), T(X) or V(X). 
(D(Y), 0) become T(MPAC) setting the store mode to DP. X may 
be indexed, o r  direct and Y indexed, direct or vacuous (push-up). 

STOVL X Store MPAC 
Y and re-load as  Vector 1.43 m. s.  

Same as STODL except V(X) become V(MPAC) and store mode 
is set to vector. 

STCALL X Store MPAC 
Y and CALL a Routine 1.40 m. 8. 

D(MPAC), T(MPAC), o r  V(MPAC) replace D(X), T(X) o r  V(X), 
leaving the store mode unaltered. Call the routine at Y, leaving a 
return address (of the location after the second address) in QPRET, 
Both addresses must be direct. 

DLOAD X Load MPAC in D P  .64 m. s .  

I (D(X), 0 )  become T(MPAC), setting the store mode to DP. 
Address may be direct, indexed o r  vacuous. 

TLOAD X Load MPAC in TP  . 77  m. s.  

Same as DLOAD except T(X) become T(MPAC) and store mode 
is set to TP. 

VLOAD X Load MPAC with a Vector .91  m. s. 

Same as DLOAD except V(X) become V(MPAC) and store mode 
is set to vector. 



Table A-3. Interpretive Inatructione (Sheet 2 of 14) 

t 
i - 

,SLOAD X Load MPAC in Single 
Precision . 74  m . s .  

Same as DLOAD except (S(X), 0,O)  become T(MPAC). X 
nay not be vacuous. 

PDDL X Push Down and 
load MPAC in DP . B l  m. a. 

D(MPAC), T(MPAC) or  V(MPAC) are  pushed down; (D(X), 0 )  
)ecome (T(MPAC) with the store mode set to DP. X may be dlrect, 
ndexed, o r  vacuous. 

PDVL X Push Down and load 
MPAC with a vector 1.14 m. a. 

Same as PDDL except V(X) become V(MPAC) and the store mode 
s set to vector. 

PUSH Push Down .55 m. e. 

D(MPAC), T(MPAC) or V(MPAC) are  pushed down. 

SETPD X Set Push-down Pointer - .58  m. 8. 

Set the Push-down Pointer PUSHIDC to X, where X is in local 
erasable memory. X must be direct. 

B. Scalar Arithmetic Operations - All addresses may be direct, indexed, 
or vacuous. 

DAD X DP Add 66 m. a. 

D(MPAC)'+ D(X) replace D(MPAC). Set OVFIND on Overflow, 
and leave the overflow-corrected result in MPAC. 

DSU X DP Subtract 66 m. s. 

D(MPAC) -D(X) replace D(MPAC). Set OVFIND on overflow, and 
overflow-correct the result. 

BDSU X DP Subtract From .74 m. s. 

D(X) - D(MPAC) replace D(MPAC). Set OVFIND on overflow, 
and overflow-correct the result. 

' 01 
11 

01 
11 

01 
11 

01 
11 

01 
11 

01 
11 

01 
11 

A-20 



Table A-3, Interpretive Instructions (Sheet 3 of 14) 

DMP X D P  Multiply 1.13 m. 8. 

D(X) times D(MPAC) replace T(MPAC). 

DMPR X D P  Multiply and Round 1.29 m. 8. 

D(MPAC) D(X) = P is formed and rounded to D P  so that (P, 0 )  
replace T( MPAC). 

DDV X DP Divide By 2.48 m. 8. 

If I D(MPAC) I < I D(X) I , the DP quotient Q=D(MPAC) / 
D(X) is  formed and (Q, 0) replace T(MPAC). Overflow indication is set 
i f  required. ~ 9 9 9 9 9 9  replace D(MPAC) in this case. 

BDDV X DP Divide Into 2 .50  m. 8. 

Same as DDV except Q = D(X) / D(MPAC) if  
I D(X)I < I D(MPAC) I 

SIGN X DP Sign Test .70  m. s .  

X must be inerasable memory. If D(X) 2 0 ,  no operation occurs. 
Otherwise if store mode is D P  or  TP, -T(MPAC) replace T(MPAC); if 
store mode is vector, -V(MPAC) replace V(MPAC). 

TAD X TP Add . 75  m. s .  

T(MPAC) + T(X) replace T(MPAC). OVFIND is set  on overflow, 
with the overflow-corrected result left in MPAC. 

C. Vector Arithmetic Operations. 
L 

All addresses may be direct, indexed, and any but MXV and VXM 
may have vacuous addresses. 

Addressing 
Clasa 

0 1  
11 

01 
11 

01 
11 

01 
11 

01 
11 

VAD X Vector Add .92 m. s .  

I V(MPAC) +V(X) replace V(MPAC), Set OVFIND on overflow in 
any component, leaving the overflow-corrected result. 

01 
11 

A-2 1 



Table A-3. Interpretive Instructions (Sheet 4 of 14) 

vsu X Vector Subtract .92  m. s.  

V( MPAC) - V(X) replace V(MPAC). Set OVFIND on overflow in 
any component, leaving an overflow-corrected result. 

BVSU X Vector Subtract From 1.17 m. s. 

V(X) - V(MPAC) replace V(MPAC). Set OVFIND on overflow of 
any component, leaving an overflow-corrected result. 

DOT X Vector Dot Product 3.08 m. s. 

V(MPAC).V(X) replace T(MPAC), setting the store mode to DP. 
Set OVFIND if overflow occurs, leaving an overflow-corrected result. 

vxsc X Vector Times Scalar 3.27 m.s. 

If the initial store mode is Vector, each component of V(MPAC) 
is multiplied by D(X), the rounded products replacing their respective X 
components of V(MPAC). If the initial store mode is D P  o r  TP, change 
it to Vector, and each component of V(X) is multiplied by D(MPAC) to 
form V(MPAC) as  above. 

v/sc X Vector Divided by Scalar 5.39 m. 8. 

If the initial store mode is Vector, each component of V(MPAC) 
is divided by D(X), the DP  quotients replacing their respective com- 
ponents of V(MPAC). If the initial store mode is DP o r  TP, it is changed 
to Vector, and each component of V(X) is divided by D(MPAC) to form 
V(MPAC). If overflow occurs in any component, the operation is 
terminated with OVFIND set and unspecified results in MPAC. 

VXV X Vector Cross Product 4 .98  m. s.  

V(MPAC) * V(X) replace V(MPAC). Set OVFIND if overflow 
occurs, leaving an overflow-corrected result. 

VPROJ X Vector Projection 5.75 m. s. 

D(MPAC).V(X~ V(X) replace V(MPAC), Set OVFIND on 
gverflow, and leave the result obtained with overflow-corrected 
Y(MPAC). V(Xg . 

01 
11 

01 
11 

01 
11 

01 
11 

01 
11 

~~ " 

01 
11 

01 
11 

A-22 



Table A-3. Interpretive Invtructions (Sheet 5 of 14) %E!@= 
VXM X Matrix Pre-Multiplication 

by Vector 8.98 m. s .  01 
11 

(V(MPAC)T M(x))T replace V(MPAC). Set OVFIND on overflow, 

MXV X Matrix Post-Multiplication 

leaving an overflow-corrected result. 

by Vector 8.97 m.8. . 01 
11 

M(X) V(MPAC) replace V(MPAC). Set OVFIND on overflow, 
leaving an overflow-corrected result. 

D. Scalar Functions. 

SQRT D P  Square Root 1.94 m. 8. 

SQRT (D(MPAC)) replace T(MPAC); i.e. the initial contents 
of MPAC a re  normalized, the D P  square root of the normalized number 
computed, and that result unnormalized so that MPAC +2 has marginal 
significance. Receipt of an argument less than -10-4 causes an abort. 

SIN (SINE) DP Sine 5.63 m. 8,. 

. 5  (Sin (27r D(MPAC)) replace T(MPAC). 

COS(COS1NE) DP  Cosine 5.80 m. a. 

. 5  (Cos (ZT D(MPAC)) replace T(MPAC). 

ARCSIN (ASIN) D P  Arc-sine 9.26 m. s .  

(1/2T) Arc-sine (2DWPAC)) replace T (MPAC). This is the 
inverse of the SIN function. Receipt of an argument greater than .5001 
in magnitude causes an abort. 

ARCCOS (ACOS) D P  Arc-Cosine 9.12 m.s. 

(1/W) Arc-Cosine (ZD(MPAC) replace T(MPAC). This is the 
inverse of COS, Receipt of an argument whose magnitude is greater 
than .5001 causes an abort. 

DSQ D P  Square . 76  m. s .  

D(MPAC) times (D(MPAC) replace T(MPAC). 

00 

00 

00 

00 

00 

00 

A-23 



Table A-3. Ynterpretive Instructions (Sheet 6 of 14) Addressing 

,ROUND , *Round to DP . 56 m. 8. 

T(MPAC) a re  rounded to DP  so that (ROUND (T(MPAC)), 0 )  

00 

replace T(MPAC). Set OVFIND if overflow occurs, leaving an overflow- 
corrected result, + O .  

DCOMP TP Complement .52  m. 8.  

00 ABS T P  Absolute Value . 48 m. s. 

-T(MPAC) replace T(MPAC). 

00 

I T(MPAC) I replace T(MPAC). 

E. Vector Functions. 

UNIT Unit Vector Function 6.46 m. 8. 

V(MPAC)/2 1 V(MPAC) I replace V(MPAC). I V(MPAC) 

I V(MPAC) I < 2-21 o r  I V(MPAC) I 2 1 in which case the result 
replace D(34D) and I V(MPAC) I replace D(36D). Set OVFIND if 

is incorrect. 

l 2  

ABVAL Vector Length 3.86 m. 8. 

1 V(MPAC) I become T(MPAC), changing the store mode 
to DP. In addition, I V(MPAC) I 2 replace D(34D). The result is zero 
if  I V(MPAC) I ~ 2 - 2 1 .  If I V(MPAC) I 2 1 set OVFIND to indicate 
unspecified result. 

VSQ Square of Vector Length 2.21 rn. s.  

I V(MPAC) I become T(MPAC), changing the store mode 
to DP. If I V(MPAC) I 2 1, set OVFIND and leave an overflow- 
corrected result. 

VCOMP Vector Complement . 63  m. 8. 

-V( MPAC) replace V( MPAC) . 
VDE F Vector Define .67 m. s.  

Push up for V y  and again for V z  so that (D(MPAC), VY,VZ) 
become V(MPAC), setting the store mode to vector. 

00 

00 

00 

00 

00 

A-24 



Table A-3. Interpretive Instructions (Sheet 7 of 14) 

F. Shift Instructions. 
I 

- 

b 
T - 

1 
I 

r 

( - 

P 

1, Short Shifts 

SR1 Scalar Shift Right . 85 m. a. 
SR2 , 85 m. s. 
SR3 .85  m. s. 
SR4 .85  m. 8. 

T(MPAC) 2-j replace T(MPAC) (j= 1 , 2 , 3 , 4 ) .  

s L1 Scalar Shift Left .72  m. 8. 

s L2 .95  m. a. 
s L3 1.17 m. 8. 

SL4 1.39 m. 8. 

T ( M P A C ) ~  2+j replace T(MPAC) (j  = I, 2 , 3 , 4 ) .  If significant . 
i t s  are lost, set  OVFIND but leave the overflow-corrected result as 
'(MPAC). 

SRlR Scalar Shift Right . 99 m. 8. 

SR2R and Round . 9 9  m. a. 
SR3R . 99 m. 8. 

SR4R .99  m. s. 

SL2R 
S L3R 
SL4R 

and Round 1.10 m, 8. 

1.32 m. 8. 
1.54 m. a. 

T(MPAC)x 2+j i s  rounded to a DP number R and (R, 0 )  replace 
I'(MPAC) ( j  = 1 , 2 , 3 , 4 ) .  If overflow occurs,  s e t  OVFIND and leave the 
lverflow-corrected result as T(MPAC). 

VSRl Vector Shift Right 2 .01  m. s.  " 

VSR2 
TTCT 

and Round 2 .01  m. 8. 
n A i  - I 

Each component of V(MPAC) is replaced by the original value 
multiplied by 2-j and rounded to DP. (j = 1(1)8). 

;fa.;sing 

00 

00 

00 

A-25 



Table A-3. Interpretive Instructions (Sheet 8 of 14) 

VSLl 
VSL2 
VSL3 
VSL4 
VSL5 
VSL6 
VSL7 
VSL8 

Vector Shift Left . 81  m. 8. 
1.18 m. s. 
1.55 m.8. 
1.93 m. 8. 
2.30 m. s. 
2.68 m. 8. 
3.05 m. 8. 
3.43 m. 8. 

Each component of V(MPAC) is replaced by the original k l u e  
multiplied by 2 +j ( j  = 1(1)8). If overflow occurs in any component, leave 
the overflow-corrected result and set OVFTND. 

2. General Shifts. Addresses may be direct o r  indexed. 

SR X General Scalar Shift 1.38 m. s. 
~ ~ ~ 

Right +. 23 INTEGER (X/14),m. 8. 

T(MPAC)x 2-' replace T(MPAC) where -42 < X  <42 (X can 
)e negative only if the address was indexed. Address limits a re  0 < X  < 42 
.f direct and -128 < X s  < 128 if indexed. X, is the stored address before 
.ndex modification: X is the net address in any case. On overflow leave 
;he overflow-corrected result and set OVFIND. 

SL X General Scalar Shift 1.03 m, s. 
Left +. 22 X m. s. 

Same as  SR except that T(MPAC)2 replace T(MPAC). X 

SRR X General Scalar Shift 1.52 m.s. + 
Right and Round . 2 3  INTEGER (X/14) m. s. 

Same as SR except that T(MPAC)x 2-x is rounded to a DP number 
3 and (R, 0) replace T(MPAC). Address limits are 0 < X < 29 if direct. 

S LR X General Scalar Shift 1.18 m. s. + 
Left and Round . 22  X m. s. 

Same as  SL except that T(MPAC)x 2 is rounded to a DP number X 
3 and (R,  0) replace T(MPAC). Direct address limits are 0 < X < 14. 

r Addressing 

00 

01 
11 

01 
11 

01 
11 

01 
11 

A-26 



Table A-3. Interpretive Instructions (Sheet 9 of 14) Addressin 4 
VSR X General Vector Shift 2.61 m. s .  

11 Right +. 82 INTEGER (X/14)m. 8. 
01 

Each component of V(MPAC) is replaced by the original value 
multiplied by 2-x and rounded to DP. If X is an indexed address and the 
result address negative, do a VSL -X instead. Address limits are 
0 < X -C 29 if direct and -128 < X, < 128 if  indexed. 

VSL X General Vector Shift . 8 9  m. a. 
11 Left +. 37 X m. 8. 
01 

Each component of V(MPAC) is replaced by the original com- 
ponent multiplied by 2 x .  On overflow of any component, leave the 
overflow-corrected result and set OVFIND. If the address was indexed 
and the resulting address negative, VSR(-X) instead. Address limits' a re  
0 < X < 28 i f  direct. 

3. Normalization. Address may be direct o r  indexed. 

NORM(SLC) X Scalar Normalize . 88  m. s. 
11 +.21 N m.8. 
01 

? 

An N is found such that I T(MPAC) I 2N 2 . 5  provided T(MPAC) 
= 0. -N replaces S(X) and T(MPAC)x 2N replace T(MPAC). If T(MPAC) 
= 0, -0 replaces S(X) and T(MPAC) a re  unchanged. 

G. Branching, Sequence Changing, and Subroutine Linkage Instructions. 
A 

All have a direct address except EXIT and RVQ. Any such 
address except those associated with transition to basic language (RTB 
and BOVB) is interpreted as  indirect if i t  refers to erasable memory. 
Any level of indirect addressing is allowed. 

GOTO X Go To .77  m. s .  

Begin executing interpretive instructions at X. QPRET is 

10 

undisturbed. GOTO is a right-hand operation code. 

CALL X Call a Subroutine . 89  m. s. 

Begin executing interpretive instructions at X. A return address 

10 

is left i n  QPRET. CALL is a right-hand operation code. 

CGOTO X Computed . 90  m.s. 10 
Y GoTo 

The contents of X(X in erasable) a re  added to address Y(Y in 
fixed) and the address at Y + S(X) is selected. Begin executing interpretive 
instructions there unless the address is in erasable, in which case it is 
interpreted as indirect. C O T 0  is a right-hand op code. 

A-27 



Table A-3, Interpretive Instructions (Sheet 10 of 14) P 
CCALL X Computed 1.07 m. 8. 

Same as CGOTO except that a return address is left in QPRET in 
addition. CCALL is a right-hand op code. 

RVQUTCQ) Return Via QPRET .69 m. s .  

Begin executing interpretive instructions at the location whose 
address is in QPRET. This may be used to return from a subroutine 
which contains no CALL or  CCALL instructions. If QPRET contains the 
address of an erasable register, the address is interpreted as an in- 
direct address. RVQ is a "right-hand op code". 

STQ(1TA) X Store QPRET .69 m. 8. 

S(QPRET) replaces S(X) (X in erasable). This may be used to saw 
the return address in subroutines which contain CALL and CCALL instruc- 
tions. The STQ X in this case is eventually followed by GOTO X to return. 

B PL X Branch Plugs .65 m. s. + 
.19 m. s .  GO 

If T(MPAC) 0, do a GOTO X. Otherwise, no operation occurs. 

BZE X Branch Zero .65 m. s. 
+. 19 m. s. GO 

If T(MPAC) = 0, do a GOTO X. Otherwise, no operation occurs. 

BMN X Branch Minus .67 m. 8. 
+. 19 m. s .  GO 

If T(MPAC) 0, do a GOTO X. Otherwise, no operation occurs. 

BHIZ X Branch High .6 m. 8. 
Order Zero +. 19 m. s. GO 

If S(MPAC) = 0, do a GOTO X. Otherwise, no operation occurs. 

BOV X Branch On .58 m. 8. 
Overflow +.23 m. s .  GO 

If OVFIND is set, reset it to zero and do a GOTO X. Otherwise, 
no operation occurs. 

BOVB X Branch On .58 m. 6. 
Overflow to Basic +.16 m.6. GO 

~~~~ ~~~~~ ~ 

If OV FIND is set, reset it to zero and begin executing basic
instructions at X. Otherwise, no operation occurs, X must be in fixed
memory.

A-2 8

10

10

1 0

10

10

10

10

10

10

Table A-3. Interpretive Instructions (sheet 11 of 14)

RTB X Return to Basic . 7 1 m. s.

Begin executing basic instructions at X. X must be in fixed
memory.

EXIT Exit from Interpreter .26 m. s.

Begin executing basic instructions after the last op code o r
Pddress word referenced by the interpreter as follows:

1) If EXIT is a left-hand op code, go to the word after the

2) If EXIT is a right-hand op code, go to the word following the
EXIT instructions;

last address used by the left-hand op code.

EXIT is a right-hand op code.

H . Switch Instructions,
b

SET X Set Switch 1.27 m. s.

Set switch X to 1.
I
I CLEAR X Clear Switch 1.25 m. s.

I Clear switch X to 0.

INVERT X Invert Switch 1.27 m. s.

Invert switch X; i. e. , i f 0 , set to 1; if 1, clear to 0.

SETGO X Set Switch 1.54 m. s.
Y and Go To

Set switch X to 1 and do a GOTO Y, SETGO is a right-hand op code,
I

CLRGO x Clear Switch
Y and Go To

1.52 m. s.

Clear switch X to 0 and do a GOTO Y . CLRGO is a right-hand
op code.

INVGO x Invert Switch 1.54 m. s.
Y and Go To

I Invert switch X and do a GOTO Y. INVGO is a right-hand op code.

Addreesing
Class -

10

10

10

10

10

10

10

10

A-29

1.

Table A-3. Interpretive Instructions (Sheet 12 of 14)

Switch Test Instructions.

BON X Branch i f ' 1.26 m. a.
Y Switch On +. 23 m. 8.

If switch X is set to 1, do a GOTO Y . Otherwise, no operation
occurs.

BOFF X Branch if 1.27 moa. .
\ Y Switch Off + .23 m. a. GO

If switch X is cleared to 0, do a GOTO Y . Otherwise, no operation
occurs.

BONSET X Branch if Switch 1.37 m.8.
Y On, Setting Switch +.23 m. a. GO

Set switch X to 1. If initially set to 1, do a GOTO Y . Otherwise,
no further operation occurs.

BOFSET X Branch if Switch 1.39 m. a.
Y Off, Setting Switch +.23 m. a. GO

Set switch X to 1. If initially cleared to 0 , do a GOTO Y . Other-
wise, no further operation occurs.

BONCLR X Branch if Switch 1.35 m.s.
Y On, Clearing Switch +.23 m.8. GO

Clear switch X to 0 . If initially set to 1, do a GOTO Y . Other-
wise, no further operation occurs.

, BOFCLR X Branch if Switch . 1.36 m. a.
Y Off, Clearing Switch +.23 m. 8. GO

Clear switch X to 0 . If initially cleared to 0 , do a GOTO Y .
Otherwise, no further operation occurs.

BONINV X Branch if Switch 1.37 m. s.
Y On, Inverting Switch +. 23 m. a. GO .

Invert switch X. If originally set to 1, do a GOTO Y. Otherwise,
no further operation occurs.

BOFINV X Branch if Switch 1.39 m.s.
Y Off, Inverting Switch +. 23 m. a. CO

Invert switch X. If originally cleared to 0 , do a GOTO Y. Other-
wise, no operation occurs.

10

10

10

10

10

10

10

10

A-3 0

Table A-3. Interpretive Instructions (Sheet 13 of 14)

J. Index Register Instructions.

AXT, 1 X Address to . 75 m. s.
AXT, 2 X Index True

X replaces S(XT) (T = 1,2).

AXC, 1 X Address to . 7 6 m. s.
AXC, 2 x Index Complemented

-X replaces S(XT).

LXA, 1 x Load Index . 78 m. s.
LXA, 2 x from E rasable

S(X) replaces S(XT).

LXC, 1 x Load Index . 7 8 m. s .
Lxc, 2 x from Erasable Complemented

-S(X) replaces S(XT).

SXA, 1 x Store Index . 78 m. 8.
SXA, 2 x in Erasable

S(XT) replaces S(X).

XCHX, 1 X Exchange Index . 8 3 m. s.
XCHX, 2 X with Erasable

S(XT) replaces S(X) which then replaces S(XT).

INCR, 1 X Increment Index . 7 6 m. s .
INCR. 2 X

a

I The overflow-corrected sum of S(XT) and X replaces S(XT).

XAD, 1 X Index Register . 77 m. 6.
XAD, 2 X Add

The overflow-corrected sum of S(XT) and S(X) replace S(XT).

xsu, 1 x Index Register Subtract 78 m. s,
xsu, 2 x
The overflow-corrected difference S(XT) - S(X) replaces S(XT).

10

10

10

10

10

10

10

10

10

A-3 3.

, . -".. ". ^. . I_ - -

Table A-3. Interpretive Instructions (Sheet 14 of 14) Addressing - ?!lass
s

a TIX, 1 X Transfer on Index .78 m. s . .
TM, 2 X +.26 m. 8. GO

10

If S(XT) 5 S(ST) (T= I, 2) , no operation occurs. Otherwise,
S(XT) - S(ST) replaces S(XT) and a GOT0 X is executed.

K. Miscellaneous Instructions.
*

SSP X Set Single .67 m. s. 10
Y Precision

Y replaces S (X) . Y may be any constant: arithmetic, logical,
address, etc.

STADR Push Up On .26 m. s. 00

I Store Code I
During assembly, the appearance of STADR causes the next store

code to be stored complemented. During execution, STADR complements the
next word to be referenced by the interpreter and enters the store code
processor. STADR is a right-hand op code.

A-32

APPENDIX B.

EXPLANATION OF SAMPLE PROGRAM LISTING

INTRODUCTION

A page from a program listing is shown on Figure B-1. Call numbers 1 through 20 have
been added for ease of explanation. The numbers below correspond with the call numbers
on the figure.

1. Assembler language.

2. Program title,

3. Program listing page number.

4. Routine title.

5. Routine page number.

6. Basic data.

7. Calling sequence of the Alarm routine by another routine. Assume TC ALARM = L
and OCT AAANN = L + 1. The alarm number is NN and the general area of the alarm
i s AAA. A listing of the complete alarm numbers (AAANN) and their definitions is
provided in the section of this study guide which contains the explanation of the Alarm
routine.

8. This is a card used to indicate to the assembler to start the assembly of the routine at
at octal address 5644.

9. This notifies the programmer that the EBANK being used is the same bank as is
associated with FAILREG. In this case, E2 is used.

10. Column depicting the programmer's punch card number.

B- 1

"" "-4- " -. "" " . . - " - ... _" ... -E "

h .. " -.
. . AL&PA.::D- A@ClT - - -. - ".fLSJzE*S. an- "4 ". . . "

- - "- - "

...

cc35
. .

Of35

10
U

Figure B-1. Sample Program Listing

E 2

11. Column depicting the fixed memory address. FBANK 2 is implied when the general
address is 40008 or 50008. FBANK 3 is implied when the general address is 60008 or
70008 . Any other FBANK is designated by, for example, 01, 2160 where 01 is F'BANK 1
and 2160 is the general address.

12. Column depicting the contents of the adjacent fixed memory address. The contents
can be instruction o r data words. Two instruction words are explained in 13 and 14. A
data word is explained in 15.

13. A typical instruction word is shown and is broken down into its parts below:

56 002 0 XCH Q (mneumonics)

Operation Code
(noted as 05.6; an
Exchange Instruction)

General Data Address
(In this case Q)

Parity
(In this case 0, because
odd parity is used)

(TAKE CONTENTS OF Q AND
PUT IT INTO A, AND TAKE
THE CONTENTS OF A AND
PUT IT INTO Q)

14. Shown below is a contraction of an instruction word as noted by the apostrophe mark.

11 ' 363 1 CCS FAILREG

To determine the operation code, general address, EBANK and Parity, the word will be
converted from octal to binary:

BITS 15 14 13

BINARY NOTATION 0 0 1

OCTAL NOTATION 1

-

12 11 10

0 0 1

1

Bits 1 - 10 define the general address, 13638.

9 8 7

0 1 1

3

6 5 4

1 1 0

6

3 2 1

0 1 1

3 1

PARITY
BIT

Bits 9 - 10 define the EBANK, 28.

Bits 11 - 15 define the operation code 01.08.

B-3

15. Shown below is a typical data word:

OCT 40400

DATA WORD

PARITY BIT word given.

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 / 4 1 0 1 4 1 . 0 1 0

16. Subroutine orrcontent referral.

17. Mneumonics associated with the contents of the adjacent memory location (for ease
of reading only).

18. Programmer's remarks (explain unique situations o r functions).

19. Note that INHINT , inhibit program interrupt, and RELJNT, remove program
interrupt inhibit, a re implied instructions using the operation code of Wansfer control"
to an address which is specifically designated to functionally establish the inhibits or
release inhibits of program interrupts.

20. The 2CADR address constant is described below. This constant code is intended to
be used as the operand of a DTCB (DXCH Z) instruction.

Two constant words a r e generated by this code, The first word, in this case, Octal 03113,
is called GENADR (General Address) while the second word, Octal 02002, is called BBCON
(Both Bank Constant), The explanation of 2CADR DOALARM is as follows:

DOALARM is located in FBANK 01.

c(BBANK) =Octal 02002 = Binary \ O 0 0 0 1, 0 0 0 0 0 0 0 0 1 0
I) U

FBANK = 018 EBANK = 28

Since FBANK uses'the top five bits of BBANK (Both Banks), the FBANK associated with
the ZCADR is 01. The low three bits of BBANK are associated with EBANK. Therefore,
the EBANK used will also be 2.

B-4

APPENDIX C

* INTERPRETNE PROGRAMMINC3

INTRODUCTION

The list-processing, algebraic interpreter is a Program Section in the CMCfs and LGC's
Fixed Memory which is used to decode and execute mission Wction routines that a re stored
in the computer's memory in interpretive language. Interpretive language is defined as a
pseudo-algebraic language which is oriented toward the specific types of problems that
must be solved on the Apollo Mission. Mission function routines can be prepared and then
assembled in interpretive language wfih a considerable saving of required program-storage
memory area, however the savings in program-storage is offset by the additional time
required to perform a specific arithmetic operation,

The problem orientated programs are assembled by another computer program referred to
as a YUL assembler. The assembled program is then wired into the fixed memory of the
Apollo computer, The Interpreter Program Section converts the problem orientated
program listing into the basic machine instructions, o r language, at the time on inhrpretive
program is to be executed.

The organization and operation of the Interpreter Program Section and an analysis of
interpretive language programming will be presented after a general discussion of multi-
precision operation of the computers under program control.

C. 1 MULTI-PRECISION OPERATION

C. 1.1 MULTI-PRECISION NUMBERS. Most of the variables used in solving the cam- . plex, mathematical equations which make up the Apollo Guidance & Navigation Program
require more accuracy in expression than can be obtained from 14 significant bits of
binary data. Therefore, the interpretive language system for the Apollo computers is
centered around multiple-precision computation. The Interpreter Program Section
provides for three, multi-precision modes of operation:

a. Double Precision Mode: where the double-precision quantity x is stored at locations
x and x + 1, and where the value of x is equated to [c o + c(X+l) x 2-"].

h. Triple Precision Mode: where the triple-precision quantity u is stored at locations
U, U+l, and U+2, and where the value of u is equated to c(U) + c(U +I) x 2-14 + C
c(U +2) x , 2 4 7 .
c. Double Precision Vector Mode: where the three, double-precision, orthogonal
components r, s , and t of vector v are stored at locations V through V + 5, and where
the value of the components are equated to r = [c(V) + c(V +1) x 2 - l q , s =
[c(V+2) + c(V +3) x 2-14] , and t = [c(V+4) + c(V+5) x Z"4].

c-1

A s with single-precision variables in the basic machine language, the fixed, binary point
for a multi-precision variable is considered to be located between bit positions 15 and 14
of the most significant 14 binary bits; and therefore, the variable is expressed entirely
fractional.

C. 1.2 INTERPRETIVE ACCUMULATOR - MPAC. In order to carry out multi-
precision calculations, the Interpreter Program Section is provided with a Multi-Purpose
Accumulator (MPAC) which is used in a manner similar to the accumulator in the
computer's Central Processor. The use of the MPAC is completely under program
control. The MPAC consists of a set of seven E-Memory locations which are assigned
by the Executive and which are, by definition, located in the Core Set Area for the
active job that is currently being executed. Actually, the first seven locations in the
Core Set Area for each job listed on the Job list can be considered to be the MPAC for
that job, (See figure 2-1 Executive Core Set List), However, these locations are really
used for temporary storage locations only if the job has been placed on the Job list,
but not yet initiated; or, they are used to store the contents of the MPAC when the job
is "put to sleep" or when the job is displaced for a higher-priority job by the Executive.
The array of the seven locations of the MPAC is similar to the array for any multi-
precision quantity (i. e. x, u, o r vi, except that in the Double-Precision Vector Mode,
the three double-precision components are stored at 1ocationsFPAC + (MPAC + 1) x
f I 4] , [(MPAC + 3) + (MPAC + 4) x 2-"] and[(MPAC + 5) + (MPAC + 6) x 2 -141 . , 1

and, location MPAC + 2 is not used,

C. 1 . 3 MEMORY ORGANIZATION, When a multi-precision quantity is stored in
memory, the 14 significant bits stored at location K will always be the most signiflcant
14 bits of the quantity. The Interpreter Program Section automatically uses the
locations which immediately follow location K (i. e. , K + 1, ---K + 5) as required to 0 store the lesser significant, 14 bit segments, A vector quantity will always have its
orthogonal components stored in the order: i, j , k (i. e., i = K & K + 1, j = K + 2 &
K + 3, k = K + 4 & K + 5). For this reason, whenever an E-Memory location is
assigned to a particular, variable, multi-precision quantity, the next-higher-numbered
location(s) must be reserved for storage of the quantity's lesser-significant, 14 bit
segment@).

Most of the banks of the computer's Fixed-Switchable Memory and most of the E-Memory,
including all of the E-Banks, may be used for interpretive language program sections,
interpretive constants and variables. However, some limitations on usage and bank
switching do exist, For interpretive considerations, Fixed-Switchable Memory can be
divided into three parts, The lower part consists of Banks 04 through 17. Fixed-
Fixed Memory (Banks 02 and 0 3) and Banks 00 and 0 1 Fixed-Switchable Memory contain
the Interpreter Program Section itself, and are not available for interpretive language
program sections or interpretive constants. The two upper (or higher) parts consist
of the higher-order banks of Fixed-Switchable Memory (Banks 21 through 27) and the
five, Fixed-Extension Channels (Banks 30 through 77) respectively. Bank 20 is not
available for interpretive language program sections o r interpretive constants.

c-2

The Interpreter Program Section cannot switch Fixed-Extension Channels; it is assumed
that any interpretive language program section can be contained in the first and second
parts o r Fixed-Switchable Memory plus one Fixed-Extension Channel (eight banks). 0 Interpretive language program sections may be stored anywhere in the above three parts
of Fixed-Switchable Memory that is available to interpretive language program sections,
Any interpretive language program section that is located in the first or second part
o r in any single channel of the third part of Fixed-Switchable Memory may branch to
any other interpretive language program section that is not in another Fixed-Extension
Channel. However, constants used by a program must be taken from the section con-
taining the program.

Variables may be stored anywhere in erasable memory except the.input/output channels
and registers (OO)8 through (57)s. The Interpreter Program Section cannot switch
E-Banks; however, general-erasable memory from location (6 0) ~ through location
(1377)s plus the current E-Bank (referred to as fllocal erasable") are together available
for variable storage and temporary storage for calculated results.
C. 1.4 THE PUSHLIST. The Interpreter Program Section provides a set of 38 locations
in the Work Area assigned by the Executive that is known as the Pushlist. The name
is derived from the term push-down list or a set of storage locations which exhibit
a last-in, first-out behaviour (i. e., the last quantity entered into the list is normally
the first quantity to be recalled.) Sufficient work-area locations are provided in the
Pushlist to allow more than one double-precision, triple-precision, o r vector quantity
to be stored. If three such quantities are stored before any quantity is recalled, the last
quantity entered would be recalled first, the second quantity entered would be recalled
next, and the first quantity entered would be recalled last.
The push-down list that is provided by the AGC Interpreter Program Section is peculiar
in its design in that any quantity stored anywhere in the list (double-precision, triple-
precision, .or vector) may be read out by an indexed address operation without erasing 0 the quantity stored or changing its location with respect to any other quantity stored in
the list. This peculiar capability is in addition to, and does not affect the normal
capability which effectively "erases" the content of the last location used after recall
to make it available for future temporary storage use.

The advantage of the Interpreter Program Section% peculiar type of push-down list is
that a quantity may be formed -- for example, a double-precision multiply operation
followed by a double-precision add operation -- and then stored in the Pushlist in the
normal manner. %It may then be recalled as many times as is needed, without erasing
it or changing its value o r location in the Pushlist as long as it is always recalled by the
indexed-address method instead of the normal method. The indexed-address recall
provision does not affect o r nullify the normal push-down capability (i. e., the last-in,
first-out capability) of placing another quantity ?'on top of" the first quantity, and then
recalling the last quantity first.

The manner in which quantities are entered into and recalled from the Pushlist will be
discussed in the following section.

c- 3

C* 2 INTERPRETIVE INSTRUCTIONS

C. 2.1. ORGANIZATION O F INTERPRETIVE LANGUAGE PROGRAMMING. Interpretive
language programming differs considerably in format from basic language programming.
An interpretive instruction requires a 7-bit order code for expression; whereas, the
basic language instruction order code requires only three to five bits. It is desirable
to employ address codes for constants that allow these constants to appear in a
different bank from the instruction program routine. It is also desirable to allow
instruction program routines to branch to other routines anywhere in Fixed-Switchable
Memory. Therefore, the interpretive address code must be a complete address code
(a CADR); whereas, the basic language instruction address code gives only the sub-
address within the current F-Bank.

Due to the limited CGC/LGC word length, it is not practical to pack the interpretive
instruction order code and its relative address code into one word of computer
memory. Interpretive instructions are packed in Interpretive Instruction Words (IIW's)
with two order codes in bit positions 1 through 7 and 8 through 14, respectively.
Addresses for constants and branch addresses are given a full computer memory word;
whereas, the address of a variable in local erasable memory only requires 10 bits.
Instructions which store the contents of an accumulator are generally the only ones
whose addressing capability may be restricted to local erasable memory; therefore,
these instructions contain an E-Memory address in bit positions 1 through 10, and the
instruction order code in bit positions 11 through 14.

An IIW which contains two interpretive instruction order codes will normally be fol-
lowed in an interpretive program listing with two Interpretive Address. Words (IAWfs)
which contain the relative addresses for the two interpretive instructions. I€ the
second interpretive instruction order code (bit positions 8 through 14) is a branch
instruction, the second IAW below will be a branch address. Some interpretive instruc-
tions such as function codes (for sine, cosine, square root, etc. functions) and some
shift instructions (shift right one, shift left two, etc.) are unary in nature and require no
IAW. (All function and shift instructions operate exclusively on an accumulator.)

When more than one mathematical execution is involved in solving an equation, the
IIW's which program the executions, together with their relative IAW's, are formed
into an Interpretive Program String. The first interpretive instruction order code in a
program string will always be a LOAD Instruction to "load" the interpretive
accumulator (MPAC). This instruction also sets the mode of operation (D. P . , T. p.
or Vector Mode) of the Interpreter for the program string. When program control is
transferred to the Interpreter, program operation extracts one IIW at a time from the
Interpretive Program String, decodes the order code(s), then mates each interpretive
instruction with its relative CADR. The CADR(s) is/are obtained from the IAW(s)
immediately below the IIW in the program string. Each interpretive instruction is
then executed by the Interpreter before another l IW is extracted from the program
string. Interpretive Program Strings are normally terminated by a STORE Instruction
which stores the resultant contents of the accumulator (MPAC) at some designated
E-Memory storage location, The number of successive locations used to store the
result is determined by the mode of operation for the program string.

c-4

c. 2 . 2 INTERPRETIVE INSTRUCTION ADDRESSING CLASSIFICATIONS. Two index
registers, Xl , and X2, are provided in the Work Area that is assigned by the Executive

interpretive instruction order code specifies that a given IAW is to be indexed, the IAW
will be stored complemented for Index Register 2, and stored normally if Index Register
1 is to be used. The indexed operand address is obtained by subtracting the content of the
specified index register from the address specified in the IAW. In addition to the index
registers, two step registers , S1 and 52, are provided for reducing the contents of the
two index registers by specified "step-function1? amounts. A set of interpretive instruc-
tion order codes is provided exclusively for manipulating the contents of the index
registers and for counting and branching on the contents of the index registers by using
the step registers.

The 7-bit order code which characterizes the interpretive instruction allows the general
code set to be divided into four addressing classes. The 2 least-significant bits of the
7-bit code are used to specify the addressing class for the instruction:

1) fo r addressing modification of IAW's under Interpreter program control. When the

Class Code

00

01

11

10

Addressinp Class

Unary instructions which require no address (i. e., act
only on an accumulator). Included in this class are the
function order codes and some shift instructions.

Arithmetic instructions with non-indexed addresses.
Address may be in any location of "local erasable" or
any location of the part of Fixed-Switchable Memory
from which the instruction was taken.

Arithmetic instructions with indexed addresses. Con-
tent of an index register is subtracted from the given
address to form the net operand address. Address lo-
cation limitations of Class 01 apply. .

Branch instructions and index register instructions.
This set of instructions is used to perform sequence
changes and to modify the contents of an index register.
Address may be any location of 1flocal erasable" o r any
location in any part of locally available, Fixed-switchable
Memory.

C. 2 . 3 CLASS 00 INSTRUCTIONS FUNCTION ORDER CODES AND UNARY SHIFT
INSTRUCTIONS, The function order codes that are recognized by the interpreter pro-
gram section include nine scales and five vector functions. A complete listing of these
functions and other interpretive instructions appear in the appendix of this study guide.
Each of these instructions operates on the contents of MPAC and therefore require no
Interpretive Address Word in the interpretive string.

c-5

A total of thirty-two unary shift instructions are provided for the interpretive scaling
adjustments that a re frequently required for fixed-point computation. These shift in- @ structions require no address because the individual order codes specify fixed, short-
length shifts. The first 16, llshort-shifttt order codes provide: Scaler Shift Right, one
to four places; Scaler Shift Left, one to four places; Scaler Shift Right And Round (to DP),
one to four places; and, Scaler Shift Left And Round (to DP), one to four places. The
remaining sixteen "short-shift!! order codes provide Vector Shift Right And Round (to DF),
one to eight places; and, Vector Shift Left (without round), one to eight places.

C. 2 . 4 CLASSES 0 1 AND 11 INSTRUCTIONS, LOAD AND GENERAL SHIFT
INSTRUCTIONS. These instructions form a special group of hterpretive instructions
which operate only on the contents of MPAC. The instructions do, however, require
either a direct address (class 01) o r an indexed address (class 11) to load the MPAC for
an arithmetic o r shifting operation. Twelve store o r load instructions, seven general
shift instructions, nine scaler arithmetic operations and ten vector arithmetic operations
a re included in these classes of instructions.

C. 2 . 5 CLASS 10 INSTRUCTIONS, PROGRAM MECHANIZATION INSTRUCTIONS. The
program mechanization instructions are used for branching, sequence changing, sub-
routine linkage and for loading, storing and modifying the contents of the two index
registers (Xl, X2). These instructions must be followed by an address word to indicate
where to branch to etc. They do not affect the contents of MPAC. Forty instructions
fall into this instruction class including fourteen used for sequence changing, branching
and subrouting linkage under general interpretive language program control.

A second sub-group of fourteen instructions are used for setting, resetting, inverting,
branching and testing a set of sixty-two valued indicators called Interpretive switches.
These switches are located in four consecutive E-Memory locations called STATE,

tion requires an address word defining which switch is to be operated on.
STATE +1, STATE +2, and STATE +3 with fifteen switches per location. Each instruc-

A third sub-group of class 10 instructions include 1010 instructions to manipulate the
contents of the two index registers X1, and X2.

There are two additional program mechanization instructions with order codes that
allow them to fa l l into the class 00. These instructions are STADR (recognize store
code) and SSP (Set Single Precision).

A complete description of the interpretive instructions are included in the appendix.

C. 3 INTERPRETER PROGRAM OPERATION

C. 3 .1 NODAL ANALYSIS O F GENERALIZED PARENTHETICAL EXPRESSIONS. The
format for the programmed solution of an equation which requires several Interpretive
Program Strings and which uses the Pushlist can best be illustrated in the form of an

C-6

example. The equation to be programmed is the solution for the sum and difference
roots of the familiar, second-order, quadratic equation:

a~ + b x + c = O 2

The equation for the roots is:

- b &
x (root l), x (root 2) =

2a

a

An example of the interpretive programming techniques can beet be shown by a simplified
flow-gram of the computer operations necessary to performed. Figure C-1 illustrates
the symbols used in an Interpretive flowgram. Use of 8 temporary storage location,
pushlist, is implied in this operation.

a+b ./b

Q
a

t

Figure C-1. Network Mapping Symbols

c-7

Each node is limited to one or two input links (dependent upon the type of operation), but,
each node may have as many output links as required. The topographical network for
the interpretive routine for the roots equation is shown in Figure C-2.

A complete expression is directly computable if, and only if, for every two-input node,
at least one of the input links comes from a stored operand o r a temporarily-stored,
partial result. Therefore, for every two-input node in which both inputs are the result
of mathematical operations represented by other nodes, one of the partial results
must have been temporarily stored before the order code represented by the two-input
node is executed.

.e

If any operation node has more than one output link, the result of the mathematical
operation represented by that node must be temporarily stored before it is used as an
input to the first node which uses it. In the symbols used as two-input nodes, it is
assumed that the input on the right side is always added to, subtracted from, divided
into, etc. , the input on the left side.

Figure C-2. Interpretive Routing Flow-gram

C-8

e An interpretive language program routine may be written by starting at the lower-most
node on the left side of a network and by proceeding up the linkages of the network toward
the end-of-expression symbol. When a two-input node is reached whose other input
comes from another node, the present partial result must be temporarily stored, and
the other input treated as a sub-network and synthesized in the same manner. When the
original two-input node is reached, the partial result is recalled and the synthesis con-
tinues up the linkages toward the end-of-expression symbol. The interpretive language
program routine is as follows:

ROOTS TC INTPRET (basic language)

DLOAD SR1 (divide by 2)

BOPADR

DCOMP PUSH (positions 0 , 1)

DSQ PDDL (positions 2, 3)

AOPADR

DMP

SQRT

DAD

STODL

BDSU

DDV

STORE

EXIT

BDSU

COPADR

PUSH

DDV

00000

AOPADR

ROOTlADR

(recalls b 2/4 from 2, 3)

(positions 2, 3)

(index on Pushlist)

AOPADR

ROOTBADR

c-9

In the five Interpretive Program Strings which program the equation for the roots in
double precision, the operand address for the operand (a) is assumed to be AOPADR; @ the location ROOTlADR is assumed to be the E-Memory storage location for the first
root, X (root l), and the location ROOTBADR is used to store the second root, x (root 2).
A special feature of the PUSH Instruction is that the pushed-down quantity is retained in
the accumulator (MPAC) ; therefore, it can be temporarily stored for future use without
disrupting the present computational flow. The STORE Instruction also retains the
stored quantity in MPAC. The address word 00000 implicitly refers to the work-area
assigned by the Executive; and, it is, by definition, Position Number 1 (DP) in the
Pushlist. This is the indexed-address method of referring to the Pushlist that was
described in paragraph 2.1.4. One additional feature of the PDDL and PDVL Instruc-
tions is that they can be used to effectively exchange the contents of the accumulator
(MPAC) with the last quantity previously entered into the Pushlist. If no operand
address is provided for the load portion of these instructions, the Interpreter will
extract the last quantity previously entered into the Pushlist, and then will temporarily
store the present contents of MPAC in the location vacated by the quantity that was
extracted for loading into MPAC. The STODL and STOVL Instructions will also extract
the last quantity previously entered into the Pushlist if no operand address is provided
for the load portion of the instructions.

C. 3 . 2 THE DISPATCHER ROUTINE - PROGRAM OPERATION. For the purpose of
illustration, the Interpreter can be considered to be equivalent to a program-level,
sequence generator. The Sequence Generator in the AGCfs Control Section consists of
an SQ Decoder (command generator) and a Control Pulse Generator. The AGCIs
Sequence Generator depends on the Central Processor to load an instruction order code
from a programmed list of basic language instructions into the SQ Register (buffer),
The Sequence Generator then decodes this order code and generates a sequence of control
pulses which execute the instruction designated by the order code. The method by which

from the Sequence Generator in only two points:
@ the Interpreter decodes and then executes the interpretive language instructions differs

a. The Interpreter is a program section in the AGC fs Fixed-Memory, and therefore,
all interpretive decoding and execution is under basic language program control.

b, The Interpreter uses basic language program control to retrieve interpretive
language order codes from memory, and therefore, it does not depend on any external
source (such as the Central Processor in the analogy) to obtain each interpretive order
code.

The Tnterpreter Program Section is made up of two major routines called the Dispatcher
and the Executer. In the above analogy, the command generator (SQ Decoder) can be
compared to the Dispatcher portion of the Interpreter. The Dispatcher Routine is made
up of several minor routines and a number of subroutines. These routines decode the
interpretive language order code(s) in each Interpretive Instruction Word 0, and also,
decode the relative interpretive addresstes) and/or constant(s) in the relative Tnterpre-
tive Address Word(s) (IAWfs). After taking care of the necessary internal f'housekeepingf'
such as setting up the interpretive mode of operation, etc., the Dispatcher Routine
stores the relative address in its decoded form in a location that is known to the
Executer Routine. It then transfers Interpreter program control to the subroutine in
the Executer that is commanded by the decoded, interpretive language order code.

c-10

e C. 3 . 2 . 1 THE INTERPRETIVE PROGRAM. The interpretive program section always
uses the Interpretive Dispatcher to determine, is the word an instruction o r a store
code word? what class of instruction code is it? and which of the many subroutines
shall be selected? The Executer commands the specific subroutine called to be
performed and returns operation to the Dispatcher. The Dispatcher operation requires
entry by an instruction TC INTPRET each time an interpretive instruction string is
begun.

C. 3 . 2 . 2 DISPATCHER FLOW. (see figure C-3.)

(1) Whenever the interpretive language on mode of the computer is selected the
contents of register (Q) is stored in a temporary storage location LOC. Q contains
the address of the instruction following TC INTPRET. The contents of FBANK is
stored in BANKSET register enabling the program to return to the bank which requested
INTPRET. Bit 15 of FBANK i s stored to indicate which half of fixed memory is
accessable to the interpreter.

(2) The contents of the address defined in LOC is checked to determine if the contents
are an instruction code pair o r an interpretive store code, For the later the operation
is transferred to a store operation.

(3) If an instruction word is detected by the above test an edit operation is performed.
The high seven bits of the instruction code is shifted into storage location EDOP. The
low seven bits of the word is loaded into a location designated CYR. This transfer
operation shifts bits 7 through 2 of the initial code to bits 6 through 1 of CYR and the
original bit one of the O P code is shifted into bit 15 of CYR.

(4) Bit 15 of CYR is checked to determine if the content is a one o r zero. This is
one step in determining the class of the interpretive instruction. A one in bit 15
defines a class 01 o r 11 instruction.

(5) Check the contents of bit 1 of CYR (this was originally bit 2 of the instruction OP
code). If bit 1 = 1 a class 11 instruction an index operation is permitted in which the
contents of the INDEX register is subtracted from the given address to form the net
operand address. A TC to INDEX is commanded.

If bit 1 of CYR is 0' a class 0 1 address is defined. The address defines locations in
any location in "local erasable" or any location in the half of Fixed-Switchable
memory selected. A subroutine DIRADRES is selected eliminating the indexing
operation.

(6) & (7) If bit 15 of CYR is a ' 0' when checked in (4) above, the contents of CYR are
checked again to see if the code is all zeros o r a positive quantity. If all zeros an
automatic exit is commanded. If a positive quantity is detected in CYR a TC to
OPJUMP3 is commanded. Class 00 and 1 0 addresses are defined when bit 15 is ' 0'
and the contents of CYR is positive.

(8) We have identified an arithmetic operation with a non-indexed address location -
class 0 1 address - to this point. Now clear and subtract the contents of the address
location LOC + 1 and see if bit 15 is a '1' or '0'. If the complemented contents

c-11

SAVE C(Q) IN LOC
STORE FBANK AND

ADD 1 TO LOC BIT 15
TO UPDATE

1
1

I I
CHECK CONTENTS O F
ADDRESS IN LOC IS
CONTENT AN IIW OR I AN ADDRESS CODE

(2) I
I PERFORM EDIT OP- I

ERATION ON HIGH 7
BITS O F CONTENTS
O F ADDRESS IN LOC.
LOAD LOW 7 BITS
O F CONTENTS O F
ADDRESS IN LOC
INTO CYR

(3

c j DOSTORE

TC AUTOMATIC

Figure C-3. Interpretive Program Flow (Sheet 1 of 14)
c-12

indicate P N Z TC to PUSHUP where the mode of operation, double precision, triple
precision or.Vector, for the interpreter routine is defined. A N N Z content defined
an address in erasable o r fixed memory but not in the PUSHLIST.

(9) If an address is defined in (8) the content of LOC and the ADDRWD are incre-
mented to update for the next operation.

(10, 11, & 12) Where is the address location is the next question asked? Is it in the
work area - < 4510, in general erasable 4510 < address < 9W10 o r is it in Fixed? I€
it is in the work area the specific work area is selected by updating the address word
with the contents of FMLOC. FIXLOC contains the address of .the work area selected.

If the address is in fixed memory the FBANK register is loaded with the new fixed
bank number. 20008 is added to the contents of ADDRWD making the contents of
ADDRWD lie between 20008 and 3777, the addresses used to define a memory location
in a specified FBANK . A t this point the ADDRWD and FBANK, if needed, define the
complete address of the constant o r variable to be operated on by the interpretive
instruction defined by the code in CYR.

(13) After the location of the constant to be operated on is defined a TC instruction
is generated by indexing the code in CYR with the address of a jump table INDJUMP
to select the subroutine to be performed, These subroutines include all the instruc-
tions listed a s class 01 o r 11 in the interpretive instruction list.

(14) & (15) If an index address code (class 11) is recognized, the INDEXLOC register
is loaded with the address of the work area (FMLOC) for indexing operations. The
content of LOC is incremented to define a new address for the next following operation.
The content of this new address is complemented and loaded into the accumulator.
A CCS on the content of address defined by LOC is performed. If a PNZ quantity is
detected the INDEXLOC register is incremented, If a P Z o r a NNZ quantity is
detected the contents of a (low 14 bits) are transferred to the ADDRWD register. If a
NZ quantity is detected the operation is continued in block (16).

(16) The contents of the accumulator are anded with 76008 to mask out the bank
number of the address in the accumulator. If a check indicates a non-zero quantity
in the bank (upper 4 bits) portions of the address in A, the original value of bit 15 at
TC INTPRET must be recalled. If a zero is detected a TC to INDEX2 is generated.

(17) A non-zero bank number from (16) above causes the program to pick up the
most significant bit (Bit 15) of the original Bank number when a TC INTPRET was
generated. This bit is added to the ADDRWD giving a full 15 bit address containing
bank number and address. Bit 15 will define which half of the fixed memory banks
are being addressed.

(18) & (19) By the use of an index operation subtract the contents of INDEXLOC + X1
(Index 1 register) from the ADDRU’D. A new ADDRWD (Indexed) is obtained. A MASK
operation is performed on ADDRWD to determine the relative location of the address
defined. If a non-zero quantity is detected the address is in fixed memory o r general
erasable memory. If a f zero is detected the work area erasable memory address is

C- 13

GI UPDATE ADDRWD

V DIRADRES,

CCS ON THE COMPLI-
MENT OF THE CONTENTS
O F ADDRESS DEFINED
BY LOC+l

NNZ

UPDATE LOC UPDATE
ADDRWD

(9) , *

WHERE IS ADDRESS?
IN FTXED

I
IN GENERAL
ERASABLE r FIXEDADR

UPDATE FBANK
UPDATE ADDRWD TO
LOCATION BETWEEN
20008 & 37778

INDJUMP+l c 1

Figure C-3. Interpretive Program Flow (Sheet 2 of 14)

C- 14

LOAD INDEX LOC
UPDATE LOC TAKE
COMPLIMENT OF
ADDRESS GIVEN IN
LOC AFTER UPDATE

NZ

I PZ
INCREMENT INDEXLOC NNZ

I
UPDATE ADDRWD WITH

c (A) (15)

REMOVE BANK NUMBE
FROM C(A) & CHECK TO
SEE I F IT IS rH)

ADD BIT 15 FROM

TO ADDRWD
ORIGINAL BANK NO*

(17)

Figure C-3. Interpretive Program Flow (Sheet 3 of 14)

C-15

modified, as before, by adding the address of FMLOC (work area address) to
ADDRWD to obtain the address of the specific work area to be used.

(20) & (22) If the check in block 18 indicated a NON Zero a further check is made on
ADDRWD to determine if the address is in general erasable o r in fixed memory. E€
the address indicates a fixed memory location the high order bits of ADDRWD are
loaded into FBANK and 20008 is added to ADDRWD and 017778 to make the contents of
ADDRWD fall between 20008 and 37W8, the addresses associated with a fixed bank.
A complete fixed memory location is now defined.

(21) & (23) If the address is in general erasable from above check, if in the work
area (18, 19) and after defining a fixed memory location (20, 22) an index operation is
performed. The contents of CYR - the applicable OP code is added to the address of
INDJUMP to identify the subroutine for a specific interpretive instruction to be per-
formed on the content of the address defined in blocks 18, 19, 20, and 22. Block 13
is again repeated as a TC operation.

(24) The operation which allowed a TC to OPJUMP 3 was a CCS on CYR. This
operation would leave the absolute value of the contents decremented by 1 in the
accumulator. This value is used to update the Fixed Bank register. The OPJUMP 3
subroutine is used whenever a class OO-Addressing code - (Unary instruction) is
found in CYR.

(25, 26, & 28) Following the loading of FBANK register a CCS on CYR is again
performed. If the path into OPJUMP 3 was from TC INTPRET CYR will contain a
P N Z quantity however the possibility exists of entry into this subroutine from another
point in the program. If a positive non-zero is found the contents of CYR is added to
the address of UNAJUMP to select a subroutine falling into the UNARY instruction
group (no address required perform operation on contents of MPAC, VAC, etc.).
Several instructions included are: SQRT, SINE, UNIT.

If a positive zero (PZ) is found in CYR the previous CCS on CYR should have caused
the program to exit. If a negative zero (NZ) is found a TC to SHORT T - short
shift operation subroutine is generated.

(27) When a negative non-zero quantity is found in CYR a check is made on the MODE
register. The MODE register defines the interpreter mode, double precision, triple
precision or,vector. If a double or triple precision made is selected control is
transferred to a short shift scalar operation subroutine SHORT T. If the vector mode
is used to subroutine SHORT V - Vector Shift is selected.

(29) If the check on the contents of the address contained in LOC + 1 indicate that
the content of the PUSHDOWN LIST (Block 8) is to be used as the operand for the
arithmetic o r vector operation defined in CYR we end up in this routine (PUSHUP).
The first operation in this routine is check the contents of CYR. If CYR contains a
code 20 318, 22*, or 238 a normal usage of the contents of the PUSHDOWN list is
signified. A TC to REGUP is generated. If, however, the contents of CYR are 0, 1,
2 , or 3 several possible variations in the use of PUSHLIST contents are possible. A
further check on the contents of CYR is performed (Block 32).

8'

C-16

UPDATE ADDRWD &
10 BRANCH ZERO FIXED

1 ON ADDRWD AND 777008

(18)

UPDATE ADDRWD NO ADDRESS IN

(19)

h

INDEX CYR WITH
INaTUMP

LOAD FBANK &
MODIFY ADDRWD

(2 1) (22)

c

INDEX CYR WITH
INDJUMP

(23)

I I
TC TO

CODE IN C Y R

Figure C-3. Interpretive Program Flow (Sheet 4 of 14)

C- 17

0 OPJUMP3

I LOAD FBANK

I PNZ

NZ

PZ

PNZ
b

Figure C-3. Interpretive Program Flow (Sheet 5 of 14)

C-18

(30) Depending on the MODE double precision, triple precision, o r vector which
was determined elsewhere number of words in pushlist 2, 3, or 6 , to be used is
entered into the accumulator.

(31) The accumulator contents, -2, -3, or -6 are added to PUSHLOC to define a
specific address location. This same information is stored in ADDRWD to provide
an address for the next operation.

(32, 33, 34, & 35) The contents of the accumulator, which will be a 7 , 6 , 5 , or 4
following the previous CCS (Block 29) are added to a constant negative 4. A check
(CCS) is then made on the contents of the accumulator. The contents of the accumu-
lator after the addition will be negative zero (4), positive zero (S), positive one (6),
or positive two (7). Three possible types of operations are possible at this time:

a. An arithmetic operation which requires a standard type of operand regardless
of the previous operation (standard operand). If this type of operation is defined
a clear and subtract 2 (NOWORDS) is commanded for a double precision operation.

b. The second type of operation possible using the PUSHLIST is an operation in
which the accumulator is loaded with a load code which is independent of the
previous operation. Examples of these codes are VLOAD, DLOAD, TLOAD,
PDDL, and PDVL. If this type of operation is selected by the OP code in CYR
the accumulator, which contains a plus 1 or plus 2 is indexed with NOWORDS to
select the double, triple o r vector mode of operation.

c. The third type of operation using the PUSHLIST as an address location for an
operand is a reversing operation. If the last operation yielded a vector result the
next operand should be a scaler. VXSC is an example of the operation requiring a
reversal of this type. If this type of operation is commanded the contents of the
MODE (0, -f 1) register are indexed with REVCNT to select the reversed conditions
from the previous operation.

In all cases after completion of the selection of double, triple, or vector operation
for selecting data from the PUSHLIST a TC to REGUP + 2 2 is commanded returning
the operation to block (30) above.

(3G) In the event a store code was detected in the operation in Block (2), the type of
store operation must be selected. The contents of the accumulator are transferred
to storage as the ADDRESS WORD. The data in the accumulator is anded with a
constant to pull out the local erasable memory locations, bits 1 through 10. The 10
bit address code is stored in the ADDRESS WORD and the complete address word
(old one) is put back into the accumulator.

(37) If the store code was recognized the exact operation to be used in the storage
routine must be defined. The high order bits, bits 11 through 14 of the contents of
LOC + 1 are masked out, The resultant is multiplied by 0004008 to shift the contents
of the accumulator from bits 11+14 to bits 1-5. This enables the programmer to
use an index type operation to select a proper storage routine.

c-19

0 PUSHUP

CHECK ON THE TYPE
O F OPERATION RE-

CLEAR & SUBTRACT THE
NUMBER O F WORDS IN
PUSHLIST TO BE USED IN
AN OPERATION (30)

QUESTED BY CYR (2

CONTINUE CHECKS ON
TYPE OF PUSHLIST 0 PE RATION
OPERATION REQUESTED
BY CYR

I

I INDEPENDENT
O F LOST I

ADD THE NUMBER O F
WORDS I N PUSHLIST
TO BE USED TO
PUSHLOC & SET
ADDRWD = TO PUSH-
LOC (3 1)

J

INDEX CYR WITH
INDJUMP

(2 3)

TC TO INDJUMP
+1 PLUS O P CODE

IN CYR

INDEX
AC*CTJMULATOR
WITH NO WORDS

Figure C-3. Interpretive Program Flow (Sheet 6 of 14)

c- 20

(38) The contents of the accumulator 00 to 3210 are indexed with a TC STOREJUMP
to generate a store subroutine TC instruction which will in turn select one of the TC
STORE commands in the STOREJUMP table.

(39) If the code is found in the high order bits of the old address word it is recog-
nized as a command to update CYR with a CALLCODE. The CALLCODE register will
contain a new OP code to be used in CYR in following operations.

(40, 41, 42, & 43) If the TC STOREJUMP transfers control to STORE 1 the address
contained in ADDRWD is first updated with the contents of FlXLOC which contains the
address of the work area selected. Block 41 identifies a work area address o r a
general erasable address for storage. If a work area is defined FIXLOC is again
used to update the ADDRWD. If a general erasable address is found in ADDRWD a
storage operation is performed (Block 43). The storage operation will transfer the
data contained in MPAC and MPAC + 1 into the erasable memory locations defined by
ADDRWD and ADDRWD + 1. A double precision transfer to storage is thus performed
using ADDRWD to define the location used for storage.

(44) After the initial transfer to storage of the double precision quantities a check is
made to see if the quantity to be stored is a double o r triple precision quantity o r a
vector quantity by looking at a MODE indicator. The MODE indicator will contain a
zero for double precision, a plus one for triple precision o r a minus one for vector
operations.

(45) If a plus one was found in MODE the third component of the triple precision
quantity, which is located in MPAC + 2 is transferred to the erasable location defined
in ADDRWD + 2. Operation is picked up in the DODLOAD subroutine. Triple pre-
cision data is stored at this time.

(46) If the Vector mode of operation is detected the other two double precision
components of the vector, the Y & Z components, must be stored. The 2nd and 3rd
components of the vector are taken from MPAC + 3, 4 , and MPAC + 5, 6 . The
contents of these four locations are transferred to the storage locations defined by
ADDRWD + 2 , 3 , 4 , 5. MPAC + 2 does not contain a usable quantity as it is not
used during vector mode operations.

(47) I€ the MODE indicator contained an indication of double precision o r the vector
quantity is stored, a transfer control to Q is commanded. The contents of Q are the
TC instruction of the next following address which commanded the STORE subroutine
to be selected. The operations commanded are shown in the illustration.

(48) & (49) If a TC DODLOAD, or DOVLOAD the contents of CYR is updated with a
new OP code to command a double precision o r vector load operation followed to a TC
to DIRADRES. This indicates that a class 0 1 instruction address is to follow.

(50, 51, & 52) If a TC to DOVLOAD* or DODLOAD* is commanded (47 above) CYR
is again updated with an OP code which will ca11 an address class 11 which indicates
that an indexing register operation is permitted for an arithmetic operation.

c-2 1

0 DOSTORE

MASK OUT THE LOW 10
BITS OF THE ADDRESS
WORD EXCHANGE THE
OLD ADDRESS WORD
WITH THE NEW (36)

MASK OUT BITS 11 TO
14 O F THE OLD
ADDRESS WORD &
MULTIPLY BY BIT 6 (37)

1

INDEX C(A) WITH T C
STOREJUMP

(38)

4,10,16,22,28

UPDATE CYR

Figure C-3. Interpretive Program Flow (Sheet 7 of 14)

c-22

UPDATE ADDRWD WITH
FIXLOC

(40)

IS DATA TO BE

UPDATE ADDRWD

(42)

STARTS TO
I

STORE CONTENTS O F
MPAC, +1 IN LOCATION
DEFINED BY ADDRWD,
"1 (43)

Figure C-3. Interpretive Program Flow (Sheet 8 of 14)

C-23

-1
VECTOR
OPERATION

+1 TRIPLE PRECISION
WHAT MODE OF
OPERATION?

OPERATION

PRECISION I
3 PERATION

Q VSTORE

I

1 VSTORE
STORE 2nd i? 3rd COM-
PONENT OF VECTOR

l

FROM MPAC, +3, +4,
MPAC, +5, +6 IN LO-
CATION DEFINED BY
ADDRWD, +2, 3, 4, 5

(46)

LOAD C(MPAC+2) INTO
LOCATION DEFINED
BY ADDR-2 (45)

TRANSFER CONTROL 1
TO LOCATION DE-
FINED IN THE Q
REGISTER

6 DOVLOAD *

Figure C-3. Interpretive Program Flow (Sheet 9 of 14)

C-24

5) DODLOAD 7 DOVLOAD 9 DOVLOAD *

UPDATE CYR WITH
DLOADCOD = 40014

(48)

I
UPDATE CYR WITH
VLOADCOD = 40000

(49)
4

0 DIRADRES

CLEAR & ADD VLOAD*
= 40001

(50)
J

c

I

I

DODLOAD *

I

CLEAR&ADDDLOAD*
= 40015

_I (51)

UPDATE CYR WITH
VLOAD* OR
DLOAD * (52)

2 3 INDEX

Figure C-3. Interpretive Program Flow (Sheet 10 of 14)

C-2 5

(53, 54, 55, & 56) If a load instruction is found, as will generally be the case for a
first interpretive instruction in a string, the single, double, triple precision o r vector
load operation is defined. The contents of the ADDRWD plus the necessary following
words, ADDRRD for single precision ADDRWD, + 1 for double precision; ADDRWD, +
1, 2 for triple precision and ADDRWD, + 1, 2 , 3 , 4 , 5 for vector operations are
loaded into their appropriate location in MPAC. MPAC + 2 is not used for loading of
vector quantities. In all cases the accumulator is loaded with an appropriate quantity
to define interpretive MODE, 0 = double precision, + 1 = triple precision and -1 =
vector. A TC to NEWMODE is commanded.

(57) Here' s where you come after you load MPAC for an operation and set up
conditions describing the interpretive mode to follow. The MODE indicator is set to
a minus 1, 0 o r plus 1 depending on what happened in Blocks 53, 54, 55, and 56.

(58) After the loading of the appropriate data into MPAC by the first instruction in
an instruction string we have to look at the second instruction in the same IIW if there
is one. The subroutine labeled DANZIG assures that the proper Fixed Banks are
selected for future operations and looks at the contents of EDOP which should contain
the second half of an IIU' if there was one. If an OP code was loaded in EDOP it
would have been a Positive Non Zero o r a Positive Zero quantity. The CCS on a PZ
quantity looks at NEWJOB to see if the job presently being done is the highest priority.

If a higher priority is detected a change job subroutine is called. If a higher priority
job is not found we close the loop and go back to NEWOPS-1.

If on the check on EDOP an OP code is found we go to OPJUMP which will take the
content of EDOP, decrement it by 1 and set this value into CYR and we go around
again.

(59, 60, 61, & 62) For addressing class 10 instructions are located in CYR. The
STOREJUMP + CYR transfer control instruction selects a subroutine for selecting
a 15 bit address location. The address words are updated by the usual incrementing -
method and the contents of CYR are summed with the address location MISCJUMP.
The resulting command is to select a branching o r indexing routine to change the
operation sequence of the computer program.

(63) & (64) The operations defined by the subroutine PDDL (Pushdown and Load
MPAc) in Double Precision is the beginning of the EXECUTER portion of the inter-
pretive program flow. In this operation the contents of the pushlist defined by the
location in PUSHLOC, is transferred to MPAC, + 1. A check is made on MODE, is
a double o r triple precision or the vector mode selected? Depending on the choice a
subroutine for double, triple o r vector is chosen,

(65, 6 6 , & 67) If a triple precision (65) is detected in the check on MODE the third
component of the data is taken from the pushlist and loaded into MPAC + 2. The
MODE Switch is set to double precision. If a double precision (66) operation was
detected MPAC + 2 is set to zero. If a vector operation (67) is found by looking at
MODE, MPAC + 2 is set to zero and the remaining components of the vector are
taken from the pushlist and loaded into MPAC + 3, 4, 5 , 6. The pushlist indicator,
PUSHLOC, is decremented appropriately when data is removed from the list. The
data removed from the list is no longer available from the list; it is destroyed.
Upon completion of the transfer of data from the pushlist to MPAC for an operation
to follow control is transferred back to DANZIG, the beginning of the interpretive

C-26

Q SLOAD Q DLOAD

++
CLEAR & ADD THE
CONTENTS OF LOCA-
TION DEFINED BY
ADDRWD

(54)

TRANSFER CONTENTS
O F LOCATIONS DE-
FINED BY ADDRWD +1
TO MPAC, +l. SET
C(A) = 0 (531

Q VLOAD

TRANSFER CONTENTS
OF LOCATIONS DE-
FINED BY ADDRWD,
+1, +2 TO MPAC,
+1, +2. SET C(A) = 1(55)

EXCHANGE CONTENTS
O F LOCATIONS DE-
FINED BY ADDRWD,
+l, 2, 3, 4, 5 WITH
MPAC, +I, 3, 4, 5, 6 .
SET C(A) = -1 (56)

Figure C-3. Interpretive Program Flow (Sheet 11 of 14)

C-27

n

0 NEWMODE

SET INTERPRETIVE
MODE INDICATOR TO
PROPER VALUE

DANZIG

DANZIG I
PNZ CCS ON EDOP

PZ

CCS ON NEWJOB

.
I pz

(-) NEWOPS-1

Figure C-3. Interpretive Program Flow (Sheet 12 of 14)

C-2 8

I J’
i

INCREMENT LOC &
STORE CONTENTS
O F ADDRESS DE-
FINED (59)

i
SELECT PROPER FBA
GET O P CODE FROM

ICY”
I

I > 1 1

BELWORK
I N 1

UPDATE ADDRWD. TC TO
GET O P CODE FROM MISCJUMP+ OP

MISCJUMP TABLE INST,

AXT
AXC
LXA
I X C
sxcl
XCHX
INCR
T M
XAD
xsu
BZE/GOTO
BPL/BMN
CALL/ITA
RTB/BHIZ
sw
BOV(B)

CODE IN CYR

CYR OP CODE
00
0 1
02
03
04
05
06
07
10
11
12
13
14
15
16
17

Figure C-3. Interpretive Program Flow (Sheet 13 of 14)
C-29

('9"")
TRANSFER CONTENTS
O F LOCATION DE-
FINED BY ADDRWD, +1
INTO MPAC

L

DECREMENT PUSHLOC
BY NUMBER OF WORDS
FOR DOUBLE, TRIPLE
OR VECTOR OPERA-
TIONS

NNZ(-l)
CCS ON MODE

(0) pz

ENDT PUSH ENDDPUSH ENDVPUSH

SET MODE = 0 LOAD SET MPAC +2 = 0 SET MPAC + 2 = 0 LOAD
THIRD COMPONENT 2nd & 3rd COMPONENT
O F TRIPLE PRECISION OF VECTOR INTO MPAC
DATA INTO MPAC

I I

Figure C-3. Interpretive Program Flow (Sheet 14 of 14)

C-30

program routine to pick up the next OP code which i s stored in EDOP and we start
over again. -

(2.4 SUMMARY

The interpretive section of the computer program i s used for programming convenience in
the writing of problem orientated computer programs. This program motion consists of
two basic parts a dispatcher and an executer. The dispatcher determines the type of inter-
pretive program operation commanded by the operation code in an Interpretive Instruction
Word and what type of addressing scheme i s to follow. The executer portion of the program
is the specific subroutines which are selected by the dispatcher, which take an instruction
such as SQUARE ROOT and perform a square root operation in the basic machine Ianguage.
The executer subroutines always return the operation back to the dispatcher to select the
next operation or to allow an exit from the interpretive program

The interpretive program by use of seven bit order codes and 15 bit address codes contribute
a great deal to the versatility of the computer as a problem solving device.

C-31

	Block 1.1 The Development of the Computer Program
	Block 1.2 The Computer's Real Time Environment
	Block 1.3 Time Sharing the Computer Hardware
	Block 1.4 Implementing the Time Sharing of the Computer
	1.4 1 Counter Interrupts
	1.4 2 Program Interrupts
	1.4.3 Program Controlled Processing

	Block 1 5 Relative Priorities of the Types of Processing
	the Basis of Program Priority
	1.6.1 Introduction
	1.6.2 Terminology
	1.6.3 Scheduling
	1.6.4 Execution Control
	1.6 5 Core Set Areas and VAC Areas
	Core Set Areas
	VAC Areas

	Block 1.7 Scheduling and Execution of Time Dependent Processing
	1.7.1 Introduction
	1.7.2 Implementing Time Dependent Functions
	1.7.3 Scheduling of Time Dependent Functions
	1 7.4 Execution of Time Dependent Functions

	Block 1.8 LGC Input and Output Channel Interface
	1 8 1 Channel
	1 8.2 Channel
	1.8.3 Channel 03 High-Order Scaler
	1.8.4 Channel 04 bw-Order Scaler
	1.8.5 Output Channel
	1.8.6 Output Channel
	1.8.7 Output Channel
	1.8 8 Output Channel10
	1 8.9 Output Channel11
	1 a 10 Output Channel12
	1.8 11 Output Channel13
	1.8.12 Output Channel14
	1.8.13 Input Channel15
	1 8 14 Input Channel16
	1 8 15 Input Channels 17 through27
	1.8.16 Input Channel30
	1 8 17 Input Channel31
	1.8.18 Input Channel32
	1.8.19 Input Channel33

	Block 1.9 Computer/DSKY - Hardware/Astronaut Relationship
	1.9.1 Keyboard
	1.9.2 Display Indicators
	1.9.3 DSKY Condition Indicators
	1.9.4 DSKY Operation
	1.9.4.1 Verb-Noun
	1.9.4.2 Data Loading
	1.9.4.3 Correcting Erroneous Data
	1 9 4.4 Decimal and Octal Display and hading
	1.9.4.5 Monitor vs Display
	1.9.4.6 Changing of Major Mode
	1.9.4.7 Mode Initiation
	1.0.4.8 Computer Control of the DSKY
	1 9 4 9 DSKY/Computer/Operator Interlocks

	Verb-Noun List
	Verb Codes
	Verb Deecription
	Noun Codes

	Block 1.10 Interrelationship of Processing Functions
	Block 2.1 The Executive Routine
	2 1.1 FINDVAC and NOVAC Subroutines
	2.1.2 Change Job Subroutine
	2.1.3 End of Job Job Sleep and Priority Change Subroutines
	2 1.4 Dummy Job Subroutine
	2 1.5 Job Wake Subroutine

	Block 2.2 Waitlist Routine
	Block 2.3 TIME 3 Program Interrupt Routine (T3RUPT)
	Block 2.4 Phase Table Maintenance Routine
	2.4 1 Phase Change and New Phase Subroutines
	2.4.2 New Mode Exchange Subroutine
	2.4.3 Check Major Mode Subroutine

	Block 3.1 TIME 4 Counter Program Interrupt Routine (T4RUPT)
	3.1.1 T4RUPT had In 20 30 MSEC RUPT Service DSPTABS
	3.1.2 A LTOUT
	3.1.3 ALTROUT
	3.1.4 RR AUT CHK (Rendezvous Radar Automatic Check)
	3 1.5 IMU Monitor

	Block 3.2 Downtelemetry (DNRUPT)
	Block 3.3 Keyboard and Uplink Telemetry Input Processing Program
	3.3.1 DSKY and Uplink Interrupt Operation
	3.3.2 The Pinball Program
	3.3.2.1 C HARIN
	3.3.2.2 NOUN Subroutine
	3.3.2.3 VERB Subroutine
	3.3.2.4 SIGN Subroutine
	3.3.2.5 NUM Subroutine
	3.3.2.6 CHARALRM Subroutine
	3.3 2.7 ENTER Subroutine
	3.3.2.8 Error Reset Subroutine
	3.3.2.9 Key Release Subroutine
	3.3.2.10 Clear Subroutine

	Block 3.4 ISS Mode Switching Routines
	3.4.1 JSS CDU Zero
	3.4.2 IMU Coarse Align
	3 4.3 IMU Fine Align

	Block 3 5 IMU Pulsing Routine
	Block 3.6 AOTMARK Routine
	3.6 1 Alignment Optical Telescope (AOT)
	3.6.2 Non-flight Star Sighting
	3.6.3 Inflight Star Sighting
	3.6.4 AOTMARK Routine

	Block 4.1 Program Alarm Routine
	Block 4.2 Program Abort Routine
	Block 4.3 Fresh Start and Restart Routine
	Counter Interrupt Processing
	Program Interrupt Processing
	Counter and Program Interrupt Processing
	Priority Numbers

	Core Set Areas of the Computer Program (Core Set List)
	VAC Areas of the Computer Program
	Channel 07 Fix Extension Bits
	Radar Selection
	Gyro Selection
	Display Indicators
	Simplified Processing for Zero IMU - CDU Routine
	Executive's Core Set List
	Executive's VAC Areas
	Executive's FINDVAC and NOVAC
	Executive's Change Job
	Executive's Priority Change End of Job and Job Sleep
	Executive's Dummy Job
	Executive's Job Wake
	Waitlist's Waiting List
	Time Values Stored in List1
	Maintaining Chronological Waiting List
	Waitlist
	TIME 3 Interrupt Routine
	Phase Change and New Phase
	New Mode Exchange
	Check Major Mode
	General T4RUPT
	DSPTAB Code
	Detailed T4RUPT
	Computer Interface with Telemetry
	Nominal Downlink List Sunburst Rev14
	Downrupt
	General Flow Diagram for Pinball
	INLINK Word Format
	KEYRUPT and UPRUPT
	CHARIN
	ISS CDU-ZERO
	IMU Coarse Align
	IMU Fine Align
	IMU Pulsing
	Generation of Merged Word
	LM AOT Azimuth Positions
	AOT Reticle Pattern
	Basic Inflight Star Sighting Sequence
	AOTMARK Routine
	Program Alarm
	Program Abort
	Fresh Start and Restart
	DSKY Puehbuttons
	Display Indicators and Functions
	DSKY Condition Indicators
	System Test Codes (VERB57)
	The 12-Word Display Table Bit Assignments
	RADMODES - Channel Correlation
	IMODES 30 - Channel 30 Correlation
	IMODES 33 - Channel 33 Correlation
	Failure Numbers for Program Alarms
	Failure Numbers for Program Aborts

