
t' 

I 

Approved 

Approved 

INSTRUMEN'.'ATI 

R-489 

USERS GUIDE TO THE BLOCK 11 
AGCiLGC INTERPRETER 

by 
Char?.es A Muntz 

;April 1965 



. 

I 

ACKNOWLEDGEMENT 

This   report  was prepared  under DSR Project  55-238, 
sponsored by the Manned Spacecraft  Center of the  National 
Aeronautics  andspace  Administration  through  Contract NAS 

9-153. .  

The  publication of this   report  does not constitute ap- 
proval  by  theNationa1  Aeronautics  and Space Admini4  ration 
of the findings  or  the conclusions contained  therein.  It is 
published  only  for  the exchange and  stimulation of ideas. 

, .  

ii 



i r ‘  
I. I 

/ ‘ 1  ’ ABSTRACT 

by  Charles A .  Muntz 
April  1 9 6 5  

i 

iii 



Table of C0ntent.s 
Page 

1 

1 

2 

3 

4 

6 

X. Detailed  Timing  Summary 

XI. YUL, Assembly Forma t s  

XII. Index . 

V 

59 

66 



: i  
' !  

I 

1 

I. Introduction -.- 

I The  interpreter  is a collection of programs  in  the  Apollo  and LEM 
Guidance  Computers  which  permit:;  the  preparqtion of programs in a con- 
venient,  probl.em-oriented  language.  The  advantages of such a pseudo- 
i /  

p rob lems   a r e  well  lrnown. Conventionally,  compiler  techniques  are  used 
to  translate  equations  into  basic  machine  language  and  the  basic  language 
prbgram  executed  to  solve  the  required  problem. One disadvantage of 
th i s  translation  process is its uneconomic  use of program  storage.   The 
limitations of a space-borne  guidance  computer  indicate  the  desirability 

I 

> 

. language  over  basic  machine  language for solwing most  computational 
/ , I  ' 

' of storage  savings  at-the  expense of some  execution  time; i. e . ,  the  com- 
puter is necessar i ly   smal l  but considerably  faster  than  the  devices  i t  
controls.  Such a trade-off  may be achieved  with  an  interpreter.  

In   an  interpret ive  system , the translation  from  problem-oriented 
language  to  basic  language is ca r r i ed  out  in  two stages.  The f i rs t   s tage,  
performed by the YUL Assembler for  AGCILCC operation,  consists of 
reducing  interpretive  language  to a. compact,  encoded form.  This  inter-  
mediate   form of the  prograrn is stored  in a relatively  small   number of 
registers  in  the  guidance  computer.   Final  translation is done by the 
guidance  computer  at  execution  time,  at  the.expense of some  increase  in  
running  time. 

11. Multi-Precision I Numbers -I-.- 

Most of the  variables  involved  in  computations  during an Apollo 
mission  require   accuracy beyond  the 4 di.gits  specified  by a single  pre- 
cision  number,  indicating  that  the  problem-oriented  pseudo-language 

e 

I '  

should  be  centered  about  multiple-precision  computation. A s  many of 
the required  equations  are  most  economically  represented in  vector  and 
mat r ix   form,  it i s  highly  desirable  to  include  vector-matrix  operations 
in   such  a pseudo'--languzge. To accomplish these ends  and  to  facilitate 
operational  descriptions  in the remaining  sections of this  report ,   the 
following  symbols  and  nomenclature  are  introduced: 

- 1 -  



s (X) 

Note that  all  numbers  in  the  above  definitions  are  understood  to  be 

the  binary  point is unaffected by addition,  subtraction,  multiplication, 
. .  fractions,  This  convention is preferable  for.  fixed-point  arithmetic  since 

and  division. 

111. Interpretive  Accumulator,  M E C  

In  executing  interpretive  programs, a set  of e r a sab le   r eg i s t e r s  is 
set  aside a i  a pseudoraccumulator. This a r e a  is designated MPAC f o r  
Multi- Purpose Accumulator. MPAC consis ts  of seven r eg i s t e r s  with 
slightly  modified  array  definitions: 

- 2 -  



a . .  D(MPAC) 

T(MPAC) 

V(MPAC) 

r' 
.. 

Same as  D(X) with X = MPAC. 

Same as T(X) with.X = MPAC':. 

Six of the  seven  regis ters  a r e  

understood  to be tde  column 
vector.  

D(MPAC 4- 3)  
D(MPAC -1- 5)  
with  S(MPAC + 2 )  i r re levant .  

M(MPAC)  Not  used.  Matrix  operati.ons  are 
vector-matrix  multiplication 
and  yield  vector  results. 

S(MPAC)  Not  used  since  single  precision 
numbers   a r e  not manipulated 
in hlLPAC. 

. . An interpretive  overflow  indicator,  OVFIND, is provided  for   re-  
cording  overflows  in  ari thmetic  operations.   This  register is zero initially 
and  set   to  + 1 if  an  overflow  occurs.  Instructions a re  provided  for   tes t -  
ing and  resetting OVF'IND. 

- 

IV. Memory  Organization 

Almost  al l   memory  may  be  used  for  interpretive  variables,   con- 
stants,   and  programs.  Variables  may be s tored  anywhere  in   erasable  
memory  except   regis ters  0-778. An interpretive  program  will  not 
change E banks;  it  is assumed  that   any such computation  may  be  confined 

. to un-switched  erasable  and  one E bank.  General   erasable  from 61 to 1377 8 8 
plus the  current  E bank are together  refe'rred to as  "local  erasable". 

Fixed  memory is divided  into  two  parts fo r  interpretive  consider- 
ations. 

- 3 -  



Fixed-Fixe 

(Cross -hatched  area is 
unavailable  to  interpretive 
program,s. ) 

The low memory  consists of banks 0:-17 and  high  memory of 21-37, 
these.two  portions  referred  to as half-memories .   Programs  may be 
stored  anywhere  in  high o r  low memory. Any  ‘program  may  branch to 
any  other progrkm; however,   programs  stored  in low memory  may  only 
r e fe r  to  constants  stored in  low. memory  and  correspondingly,  programs 

l e  in  high  memory  are  limited  to  constants  in  high  memory. 

The  interpretive’language  itself  consists of a number of pseudo 
operation  -codes.   These  operation  codes  are  mostly  single  address,   with 
no-address  codes  included  where  desirable. A more  conventional  organ- 
ization.would  employ  pseudo-codes  and  address  constants  packed  into one 
word of computer memory, s imi l a r  to the  basic  instruction  format, How- 
ever,   since the AGC/LGC word  length is short,  this  organization is not 

. practical for  this  application. 
Returning‘to  memory  considerations,  it is desirable  to  allow  pro- 

grams  and  constants any-where in  f ixed  memory,  while  variables  are of 
-course confined  to  erasable  memory. A full  word is required to specify 
a fixed  memory  qddress  while  only 10 bits are  required to  locate a local 
e rasable  memory locajion.  This  constraint  on  locations of variables  leads 
to  the  following.  organizatim of coded  pseudo  instructions: 

1514 8 7  1 
General  Instructions 

0 
- For instructions  which  address  variables,   programs,  and  constants 

- 4 -  



c 

. the  above  format is us;c-,d to store  two  seven-bit  opeTation  codes  in  one 
word of memory. A d d r e s s -  constants a re  given a full  word of memory: 

8 7  

Addrcss  for OP2 

2)  1 5  14 11 10 1 
9 ~ - Z F ” ~ ~ _ l  - _I St‘ore  Instructions 

. Instructions  which  store  an  accumulator  are  generally  the  only  ones 
whose  addressing  capability  may  be  restricted  to erasable memory. 

Several  methods of address  modifications  are  provided,  as wi l l  be 

explained 1.ater. The most  important of these is furnished by two  index 
r eg i s t e r s ,  X 1  and X 2 .  If a n  addres s  is indexed,  the  contents of the 
specified  index  register a re  subtracted  from  the  unmodified  address  and 
the  result  used as a net  operand  address.  

8 

The  seven-bit  operation  codes  comprising  the  general  op  code  set 
a r e  divided  into 4 addressing  classes  according  to  the  last  two  bits of the 
operation  code: 

Suffix 

00 

01 ’ 

10 

11 

Address 

O P  code  requiring no address  - i. e .  , a set 
of unary  instructions.  Included here a r e  
function  codes (for sine,,  cosine,  square 
root,   etc.  1 and  some  shift  instructions. 

Arithmetic  instructions  with  non-indexed 
address.  Address  may  be  any  location 

. i n  local erasable ,  o r  the  half-memory 
from  which  the  instruction was taken. 

Branch  instructions  and  index  instructions, 
This   set  of instructions  perfdrms  sequence 
changes and  modifies  contents of index 
reg is te rs .   Addresses  may be the  same 
as  class 01 except  that  either  half-memory 
may be  referenced. 

Same as 01 except  that  an  index  register is 
subtracted from the  given  address to form 
a net  operand  address.. 

- 5 -  . 



VI. Description of Interpretive  0per.ati.on'  Codes ""-. _""""""" 
The  following  operations  may he used  to  load  the  multi-purpose  ac- 

cumulator  MPAC. 

DLOAD X Load MPAC  in  doublk  precision 

TLOAI3 X Load  MPAC  in  triple  precision 

VLOAD X Load  MPAC  with'a  vector 

SLOAD X Load  MPAC  with a single  precision 

The   address  X may  be   d i rec t  or indexed  and  refer  to  any  local eras- . 

able   memory   reg is te r  or any  fixed  memory  location  in  the  half-memory 
f r o m  which  the  instruction was selected. DLOAD, TLOAD  and VLOAD 
load  double  precision ( D P ) ,  tr iple  precision ('I'P), and  vector  quantities 
into  MPAC,  while SLOAD prepa res  a single  precision  quantity  (counter, 
etc. ) for  double  precision  computation. To assist   in  subsequent  operations 
which  store  MPAC,  an  indication of the  type  of.quantity  currently  in  MPAC 
is maintained  in a r eg i s t e r  known as MODE, this  information  being re-  

. f e r r ed   t o  as the  store  mode of MPAC.  The  store  mode  has  three  states:  
+O for double  precision, +I for  triple  precision,  and -1 for  vector,  Ac- 
cordingly, DLOAD and SLOAD set   the   s tore   mode to double  precision, 
TLOAD to  tr iple  precision,  and VLOAD to  vector.  

The  following  store  code  stores  MPAC,  leaving  the  store  mode  un- 
changed : 

STORE X Store MPAC  in X 

The  address  X may be anywhere  in local e ra sab le  and  may  be  direct  or 
indexed.  The  type of quantity  to he stored is spe'cified  by  the  store  mode, 
Similarly,  the  following  store  codes  combine  storing  with  other  useful 
operations: 

. STODL X Store  MPAC  in X 
Y and reload  in UP from Y 

STOVL X Store MPAC in- X 

Y and  reload as vector   f rom Y 

Y and call the  routine at Y 
STCALL X ' Store MPAC in X 

- 6 -  

1 



/ 

e, 

is coded as 
, DLOAD 

T 
STOVL TOFF 

R .  
STORE R R E C T  

metic : 

I '  

a 

DR  D 
DSU 
BDSU . 

DMP 
DMPR 
DDV 
RDDV 
SIGN 

TAD 

X 
X 
X 
X 
X 

.X 
X 
X 
X 

D P  add 
DP   sub t r ac t  
DP   subs t r ac t   f rom 
D P  multiply 
DP  multiply  and  round 
DP  divide by .. 

D P  divide into . 
D P  sign  tes t  
TP add 

A l l  leave  resul ts  in M P A C  and  may  address  local  erasable 
or the   current  half of fixed  memory  with a direct  o r  indexed address (SIGN 

is an  exception  and  may  only  address  erasable memory) .  A s  the arithmetic 
. is fixed-point  throughout, almost all of the  above  operations  may  result  in 

ll 

I 

- 7  - 



I 

overflow;  e. g. the   sum of . 5 a.nd , 75 is . 25 and  overflow. An interpret ive 

overflow  indicator, OVFIND, is maintained  to  cornxnunicate  this  information 
to  interpretive  programs.  Instructions a r e  available for testing  and  re- 

' setting it ( see  BOV and EOVU). Usually,  the overfd.ow corrected  resul t  is 
left  in  MPRC (, 25 in  the  case  above).  Ilandling of overflow  by each in- 
s t ruct ion is explained  in  the  operation  code summary. 

Usini  the  above  instructions,  

a 

b 
X = - (, 25 - c d )  

would  be  coded  in  the  following  way: 

DLOAD 

BD SU 

DDV 

STORE 

DMP 
C 
D 
D M P  , 
. 2 5  D P  
A 

B 
X 

The following  instructions  are availab1.e for  doing  vector  arithmetic 
with'a  vector  in MPAC: 

VAD 
vsu 
BVSU 
DOT 
VXSC 

- v/sc 
VXV 
VPROJ 

. VXM 
MXV 

X Vector  add 
X Vector  subtract  
X Vector  subtract   from 
X Vector  dot  product 
X Vector   t imes  scalar  - -  

X Vector  divided  by  -scalar 

X Vector   cross  produ-ct 
X Vector  projection 
X Matrix  pre-multiplied by vector 
x. ' Matrix post-multiplied by vector 

A s  before all may  address   local   erasable  and any  location 

in the  current  half-memory  with a d i rec t  or indexed  a.ddress. VAD, VSU, 

- 8 -  



e . .  
and BVSU a r e  entire3.y :tnal.c~,gous to  their   scalar  equivalents DAD, DSU, and 

BDSU. DOT is one of the few non-loading  instructions  whose  execution 
modifies  the  store  mode:  it  is changed  to  double  precision  corresponding  to 
the  resul t  of the  scalar  product. VXSC and V/$C are  unusual  in  that   the 
store mode  determines the type of quantity  to  be  found at X. If the   current  
store  mode is double or  tr iple  precision,  these  instructions  reference a 
vector at X, i. e. V(X); i f  it is a vector  they  use D(X). This  flexibility does 
not  apply  to  matrix  operations  since MPAC would  then  be  required  to  contain 
a mat r ix ;   the   address  of MXV o r  VXM always refers to a matr ix .  

Using  the  above  instructions,  the  equations 

a r e  coded as follows: 

V LOAD DOT 

Y 
Z 

DAD , 

B 
STOVL A 

z .  
DOT vxsc 

W 

U 
VAD VI sc 

Y 
A .  

STORE . X 

The  following  scalar  function  codes are available: 

- 9 -  



SQRT Square  Root 

SIN ( SITG; ) Sine 

cos (COsIhm Cosine 

ARCSIN (ASZN) Arc-sine 

ARCCOS (ACCIS) Arc-cosine ' 
DSQ Square 

. ROUND Round . 
D COM P Ne gat e 
ABS Absolute  Value 

(Alternate spellings are given in  parentheses). None of these  codes 
r equ i r e  an address .  All perform t h e k  function  on  the  scalar i n  MPAC and 
leave the i r   resu l t  in MPAC. 

The functions SIN, COS, AncSfTq, and A.l3ccos accept  scaled  inputs 
and leave scaled  outputs so that  the  full  range in question  may  be  accom- 
modated  within  the  fixed-point  fraction (see detailed  descriptions).  The 
following  illustrates  the use of the function  codes: 

- 4- Is;i 1 '  a -  1 h -kc 

a2 - - _-  m, 
cos 1 2 ( y  0 zx -1 

x =  _I__ 

2 a 

DLOAD 

DAD 

STORE 
DCOMP 
STOVL 

DOT 

STORE 

DSQ . 

B 
SQR'I' 
C 
A1 

A2 
Y 
ARCCOS 

Z 
X 

- 10 " 



e 
In addition,  the  following  vector  functions  are  available: 

c 

UNIT Unit   vector 'operation 
ARVAL  Vector  length 

VSQ Square of vecfor  length 
VCOMP Vector  negation 

Similar  to  the  scalar  functions,  these  instructions  require  no  address 
but use the  vector  in MPAC. ABVAL  and VSQ have  scalar  results and 
change  the  store  mode  to  double  precision  accordingly. UNIT and ABVAL 
produce  additional.  results as by-products,  namely the square  of the  vector 
length  in  one  standard  location  and,  in  the case of UNIT, the  length  in  an- 
other  (see  detailed  operation  code  description).  To  accommodate a vector 
of the form (x, 0, 0) a half-unit  vector is left  in MPAC by UNIT. 

Scaling  adjustments  are  frecpently  required  in  fixed-point  computa- 
tion.  Operation  codes  requiring no addres s  are provj.ded fo r  fixed, short 
length  shifts,  while  another  operation  code  uses a specially  decoded  ad- 
d r e s s  to specify a completely  general  shift.   The  short shift  c o d e s   a r e  as 
follows : 

S R l  
SR2 
SR3 
SR4 
SRlR 
SRBR. 
SR3R 
SR4R 
SL1 
SL2 
SL3 

SL4 
SL1 R 
SLZR 
SL3R 
SL4R 

Scalar  shift   r ight om 
Scalar  shift  right  two 
Scalar  shift   r ight  three 
Scalar shift  right  four 
Scalar  shift  right one and  round 
Scalar  shift  right  two  and  round 
Scalar shift  right  three  and  round 
Scalar  shift  right  four  and  round 
Scalar  shift  left one.  
Scalar  shift  left  two 
Scalar  shift left three 
Scalar  shift   left  four 
Scalar  shift  left one and round 
Scalar  shift left two  and  round 
Scalar  shift  left  threc  and  round 
Scalar shift ].eft four and round 

- 11 - 



VSRl Vector  shift  right  one 
.. * . .. 

VSR8 Vector  shift  right eight 
VSLl Vector  shift ].eft 0n.e , 

VSL8 Vector  shift  left  eight 
... I . .  

Those  codes  provide  scalar  shift  left or right,  one  to  four  places, 
with or. without  terminal  round, or vector  shift  left o r  right,  one to eight 
places. R.ounding is optional  in  scalar  shifts:  round  after  right  shift is 
desirable  unless  the  quantity is to  be  retained  in  triple  precision;  and 
round  after  left  shjft is only  meanful i f  a tr iple  precision  number is in  
MPAC; e.  g. after DOT. R.ounding is not  optional  in  vector  operations 
since  components  are  always double  precision:  vector  shift  right  always 
rounds  components  and  vector  shift.  left  never  -rounds. 

e 

Variables arc usually  scaled  to  give  maximum  precision  and still 
accommodate  the  required  range of values.  Suppose  position  information 
is required  which  can  be as large as 3 X l o8  me te r s .  To prepare  this 
quantity  for  fixed-point  arithmetic we wil l  divide  it by an  integral  power 
of two s o  that  the  maximum  value  lies  between . 5 and 1, If E is the  vector 
to be stored  in  the  Laidance  computer,  then 

- 

Suppose  that a calculated  position  increment 6R wi l l  .never  exceed 
1. 2 X 10 meters.   Then,  to  achieve  maximum  precision 6R should  be 

- 
6 - 

stored as 

To add 6R - to - R. as stored  in  fixed-point we  have 

. 

c 

- 12 - 



or 

The interpretive program for  performing  this  operation is: 

V 1,OA D VSR8 
DELR 

VAD 
R 

STORE R 

While  the  above  codes  satisfy  most  needs,  the  following  general r e -  
quirements  exist  and  are  met by the  corresponding  operation  code: 

SR Scalar  shift  right 1 -41  places 
SL Scalar shift  left  1-41  places 
SRR Scalar  shift  right  and  round 1-28  places 
SLR  Scalar  shift  left  and  round 1 - 13  .places 

VSR Vector  shift  right 1-28  places 
VSL Vector  shift  left 4 1-27  places 

The  above  shift   capabili t ies  form  l imits  for  corre,sponding  direct  
addresses .  Lf the  address  (shift   count) is indexed,  the  stored  address  may 

' l ie  between - + 128, but  the  resultant addres s  should  lie  within  the  above 
l imits.  If the   resu l t  of the  indexing  operation  produces a negative  result, 
the  specified  shift  takes  place  but  in  the  opposite  direction. 

Often,  fixed  point  division is cornp1,icated  by  wide ranges of variation, 
Such  difficulties  may  be  overcome  by  adjusting  the  scaling of the  denominator. 
The  instruction. 

NORM (SLC) X Scalar  normalization 

shif ts   the  scalar in MPAC left until'its  magnitude is a t - leas t .  . 5, storing 
the  negative of the  required  number of shifts  in  the  erasable  location X. 
Using  this   inst ruct ion  1/42  may be found wi th  maximum  precisi.on as  
follows : 

- 13 - 



A. number of 'instructions are provided  for  changing  sequence  in  an 
interpretive  program.  (Note:   programs may not  implicitly  cross bank 
boundaries;  an  explicit  sequence-change  inbtruction  must  he  used  for  this 
purpose. ) .  A s  these  instruct ions  are   the  pr incipal .   referencers  of fixed mem- 
ory,   their   addressing  range  has  been exbended to cover  both  half-memories. 
This  prohibits  indexed  addressing  in  these  instructions,   hut  in  this  case a 
more  desirahle  fo rm of address  modification is provided:  indirect  ad- 
d re s s ing  at an  arbi t rary  level .  If the   address  of a sequence-changing  in- 
s t ruc t ion   re fers   to  erasabl.e, the contents of this  location are taken to  be 
the addres s  of the  next  interpretive  instruction.. If this   address  also re -  
ferences  erasable ,   the  process is continued  until a fixed memory address  
is encountered.  Usually, oh1.y one level of indirect   address is used. 

To execute a simple  sequence  change,  the  instru'ction 

GOTO X Go to  X 

is provided. To call a subroutine  which  returns  to caller 

CALL X Call  subroutine 

a 

L 

. may  be used. Associated w i t h  each  interpretive  program is a re turn   ad-  
dress register, QPRET. CALL, leaves  in QPRET the  complete address of 
the  next  interpretive  operation  code  (See also STCALL). CALL and GOTO 
are members  of a class of operations  codes lmown as "right'hand  operation 
codes". If they are in  the left hand  position of a pair,  the  right-hand code 
must  be  blank. Clenrl.;y, if GOTO was in  the  left-hand position, a right- 

' hand op code  would'never  be  executed.  In  further  discussions, no op code 
is a right-hand  code  unless  speci€i.cally  stated. 

- 1 4 -  



will  execute a GOTO QPRET. If the original re turn  address   must   be  saved 
while  another  subroutine is called,  the  instruc'cion 

STQ (ITA) X Store QPRET 

s t o r e s  QPRET in  the  erasable  location X (X must  be a d i rec t   address ) .  If , 
QPRET was s tored   in  QTEMP, subsequent  return  may  be  made  with a GOTO 
QTEMP instruction, 

To provide  further  addressing  flexibility  for  CALL  and GOTO the 
following  instructions are provided: 

CGOTO X Computed GOTO 
Y 

CCALL X Computed  CALL 
Y 

In both  instructions, X is the  indexed or d i r ec t   add res s  of an  erasable   loca-  
tion  and Y the   address  of any location  in  either  fixed  half-memory. To lo- 
cate the  opera.nd  address for CALL or  GOTO, Y 4 S(X) is formed and the 
address   taken from there ,  To call  a different  subroutine  for  each  mode of 
a program,  the  following  may  be  used: 

CCALL 

SURROADR CADR 
CADR 
CADR 

MODE 
SURROADR 

... 

MODEZERO 
MODEONE 
MODE'rVJO 

... 

-1 5- 



' !  

- EXIT  Leave  interpretive  mode 
' RTB X Return  to  basic a t  X 

EXIT  begins  executing  basic  instructions  immediately  following  the last 
word processed  by the interpreter,   and is a'kight-hand  op  code"  like  CALL 
and GOTO. Suppose a point is reached at which  an  output bit should be set, 



a , 

c 

e -  

R'I'B may, 
operation  codes, 
des i r e  a routine 

in  effect, be used  to  construct  additionad  interpretive 
particula.u.ly those  which  r'ecluire  no address. Suppose we 

to  load the  t ime  counters j,nto MPAC. The  following  rou- 

tine  could  be  written: I 

LOADTIAIIE EXTEND 
DCA rr ITVIE: 1 
DXCI-I MPAC 
CA ,ZERO 
TS MPAC "2 
TS "ODE 
TCF DAWZIG 

When such a routine is called  with  an RTB, the  exit  instruction TCF 
DANZIG begins  the  execution of the  interpretive  instruction  following  the 
RTB.  Suppose  it is des i red   to  go to ACTI0,N if the  present  t ime is l a t e r  

than T CRIT : 

R T B  D SU 
LOADTIME 
TCRIT 

BMN 
ACTION 

No indirect   addressing  feature  j.s provided  with EETB: X must be the 
d i r ec t   add res s  of a location  in  either  fixed  half-nzemory. 

Several   ins t ruct ions may result in overflow,  setting  OVFIND  to  in- 
dicate  this  fact   to  the  interpretive program. These instructions  include: 

ABVAL ROUND SL4 VSL 

t 

. BDDV SL SL4R VSL1 
BDSU SLR SH. 

BVSU SLl . SRR VSL8 
DAD S L l R  'I' AD VSQ 
DDV s r22 UNIT VXM 

... 

' DOT SL2R VAD VXV 
DSU SL3 VPROJ v/ sc 
MXV SL3R V SR vsu 

-17 -  



If the overflow indicator is off (UFO), no operation  occurs. If it is on (+1), - 
it is reset;  then BOV does a GOTO X and BOVB, an RTB X. At  the  be- 
ginning of every  interpretive job, OVFIND is set to zero  by  the EXECUTIVE. 

The need'   for two-va1:ued indicators  arises  frequently  in hpollo mis-  
sion programs. The interpreter  provides  scornpact  storage for these  switches 
and  several  instructions wi th  which to manipulate  and test them. Four  e r a s -  
able  locations a re  reserved  in   the STATE a r e a  for  use as sixty  interpretive 
switches,   nu~nhered  f rom 0 - 59D, (&he set is almost  arbitrari ly  expandable):  

STATE 

"1 

4-2 

"3 

Fourteen  two-stage  operations are provided, First stage  options  in- 
clude : 

1) Set  switch  to 1; 
2) Clear  switch to 0;  

3) Invert  switch (0 to  1 - 1 to  0); 

4) No operation. 

Second  stage  operations are:  

1) Branch if switch  initially set (on); 
- 2) Branch i f  switch  initially clear (off); 

3) Go to  unconditionally; - 

4) No oper,ation 

. . .  

-18- 



1 

The  fourteen  useful  combinati.ons a re  
a 

SET 
C LE RR 
INVERT 
SETGO 

C JJKGO 

INVGO 

BON 

BOFF 

BONSET 

BOF SF: 'I' 

BONCIAR 

ROFCLR 

BONINV 

BOFINV 

X 
X 
X 
X 
Y 
X 
Y 
X 
Y 
X 
Y 
X 
Y 
X 
Y 
X 
Y 
X 
Y 
X 

Y 
X 
Y 
X 
.Y 

Set  switch X 
Clear switch X 
Invert  switch X 
Set  switch X 

and GOTO Y 
Clear  switch X 

and GOTO Y 
Invert  swi.tch X 

and GO'I'O Y 
If switch X is on, 

GOTO Y 
If switch X is off, 

GOTO Y 
Set  switch X, and i f  on 

initially, GOTO Y 
Set  switch X, and if  off 

initially, GOTO Y 
Clear switch X, and if on 

initially, GOTO Y 
Clear  switch X, and if  off 

initially, GOTO Y 
Invert  switch X, and if on 

initially, 'GOTO Y 
Invert  switch X, and if off 

initially, GOTO Y 

In all cases but SET, CLEAR, and  INVERT,  two full. words of addres s  
are required  in  addition  to  the  half-word  operation  code.  Note'that  the  in- 
direct   addressing  features  of the  sequence  changing  instruction apply here. 
Interrupt is inhibited  during  these  instructions so that  basic  interrupt pro- 
grams may manipulate switches with basic routines. 

A s  explained  earlier,  two  index  registers are provided for address  
modification, X1 and X2. They  also  may be used for simple  manipulation 

-19- 



' i  
' I  

i 

AXT, 1 
Axrr, 2 

I 

AXC, 1 
AXC, 2 

LXA, 1 
I LXA, 2 

LXC, 1 
LXC, 2 

SXA, 1 
s a ,  2 

XCHX, 1 
XCHX, 2 

, ' I  ' 

I 

X  Load a d d r e w  X 
X directly  into  index 
X  Load  comp3.crner~t of X 

X directly  into il:dex 
X  Load  index  from  erasable 
X reg i s t e r  X 
X Load index  with  complement 
X of e rasable   reg is te r  X 
X  Store  index  in  erasable 
X reg i s t e r  X 
X  Exchange index with 
X erasable   reg is te r  X 

Note  that   an  index  register  may  be  com&ndnted by  LXC, 1 X1 o r  LXC, 2 

X2. The  "address" X of an MI' o r  AXC instruction  may  be  any  single 
precision  constant:  interpretive  address,  OC'r o r  DEC constant,  etc. 

Single  precision  constants  may be s tored in erasable   memory  using 
the following  instruction: 

ss P X Set  single  precision  constant 
Y Y into  erasable  location X 

Y may be any  single  precision  constant, 
The following  instructions  are provided to rnodify  contents of index 

r e g i s t e r s  : . 
INCR, 1 X Add X to  index r eg i s t e r  

INCR, 2 X 
X n D ,  1 X Add the  contents of e rasable  

xsu, 1 X Subtract the contents of 
xsu, 2 X erasable  location  X  from  index 

XRD, 2 X  location X to  index . 

-20 - 



As with AXT and AXC, INCR may  use  any  single  precision  constant as  a n  

Associated  with  each  interpretive job a r e  two  s tep  regis ters  S 1  and S2. 
They  may be used  for,singI-e or  double  precision  temporary  storage  but 
are  implicit ly  used for  counting  the TIX instruction: if the  contents of the 
specified  index may be reduced by the  contents of the  corresponding  step 
register  without  producing a r e su l t  which i s ' z e r o  or  less,  the  index is r e -  
placed by the  reduced  value  and,a  GOT0 X is executed (X is indirect if i n  

erasable).  'Otherwise,  no  operation  occurs. To illustrate  the  power of 
TTX, suppose 72 words at WI  must  be  transferred to 7 2  locations  at W. 

This  opera'tion  might  be  coded as follows (X1 wi l l  be  preserved):  

SXA, 1. 

DEC ' 

SSP 

DEC 
LOOP V L O A D ~  

STORE 
TIX,.l 

AXT, 1 

XTEMP 
7 2  . ' 

s1 
6 

WI +72D, 1 

W + 72D, 1 

LXA, 1 

LOO 1' 
X'I'EMP 

- VII. ". Computation of Genefalized  Parenthetical   Expressions - "" "".-"-" - 
Many of the  simpler  algebraic  forms  may  be  directly  cornputed 

with  single-address  and  no-address  instructions. A s  example. is 

- 21- 



which is coded as 

DLOAD DM.P 
A 

. B  
D SU DDV 

C ‘  
D 

SQRT 
STORE ’ X 

More  complicated forms often  must be computed  in  steps,  saving  and 
,combining  partial results in  the  process.  An  example of such  an  ex- 

pression is 

x = ab -t cd - ef 

which  might  he  coded as  follows: 

D LOA D D M P  
A 
H 

STODL  TEMP 
C 

DMP .DAD 
D 
T E M P  

STODL. TEMP 
E 

DM€’ BDSU 
F 
T E M P  

srronE X 

-22- 



The contents of rcg is te r  TEMP a r c  only useful. in  the  cornputation of X and 
may  be  discarded  afterwards.  While t h e  above  expression  requires  the  use 
of pnly  one  temporary  variable,   expressions  can  be  constructed which re -  
quire  the  simultaneous  use of any number of temporary variables.  In par t i -  
cular ,   two  are   required  for   the  fol lowing:  

i 

, 

! I  
i i  

' !  J a2 3- b2 x = ". 

DLOAD DSQ 

A 
STODL TEMP1 

B 

DSQ DAD 
TEMPl 

STODL . TEMPl  
C 

DSQ 
STODL TEMP2 

D 

DSQ DAD 
TEMP2 

BDDV 

TER/IPl 
STORE X 

To  give a graphical  interpretation of these  phenomena,  networks of 
computational  flow may be  constructed  whose topology expresses   the  paren-  
thetical  nature  inherent  in  an  expression.  .Each  operation  code is mapped 
on to  a node  and each node l inked  to  i ts   input  variables  and  to  those  nodes 
whose inputs   arei the  resul t  of the  operation  itself. The former are   ca l led  
input  links  and  the  latter,  output links. The  following  symbols are  used: 

-23 -  

t 



I 

-24- 



The  graph of the  requirement for two  simultancous  temporaries is 

Two temporaries  are  required  because  both5nput  l inks  at   the  divide node 
come  from  nodes,  both of whose  inputs  both  come from other  nodes. In 
this ' tree-like  fashion,  networlts  requiring  an  arbitrary  number of simul- 

e 

taneous  temporaries may be constructed. 
T.he flow.graph  representation of  such  algebraic  forms  suggests a 

s-ystematic  method for their  computation.  Start  at 'a  variable  at  the  bottom 
of the flow graph,  say at the  far,  left-hand side. By our  definition,  any 
single  input nodes are  directly  computable, as  are  two  input  nodes  whose 
other  input does not  come  from  another  node. If a node is encountered 

- which is an  exception  to  this  case,   store  the  present  results  in  temporary 
storage  and,  considering  the  graph o f  operations  leading  to  that  node as a 
sub-tree,  evaluate  it   in  the  same  manner. When the  original  node is 

. reached,  combine  the  two  inputs  and  procede  up  the  tree  -until  the  entire 
- expression  has  been  evaluateh.  This  division  into  sub-trees  illustrates 

the   p rocess  foi-  the  two-temporary  example: 

-25-  



! 

. 

This   systematic   approach  suggests   that   required  temporary  s torage 
assignments  might bc: handled by the  interpreter  i tself ,   offerhg  additional 
convenience  to  the  user.  In  .addition,  memory  savings  may  be  realized by 
using  implied  address  techniques  to  specify  temporary  storage.  A pattern 
for meeting  these  temporary  storage  requirernents is i.mmediately  pro- 
vided  by a push-down list structure.  Such a list may  contain an a rb i t r a ry  
number of items  with  the  ch.aracte1-istic that the  last  quantity to be entered 
is the  f i .rst   to be withdrawn.  Entering  an  itezn  in  the  list is r e fe r r ed  t o  as 

a "push  down"  and  withdrawing  the last i tem  entered as a push up". This  
process   might  be applied  to  preceding  examples as follows: 

It 

1 

A ,  x = ab -E cd - ed 
Operation Push down list after  operation 

" 

e 

1) Form  ab  and  push down 

2) F o r m  cd  and  add ab from  the 
pushdown list 

-26- 



4) Subtract   resul t  
and store 

from  push-down list 

1 )  Form a' and  push  it  down 2 L 
.-I_ 
e o a  

2 )  F o r m  11 , add  from  push-down 
list,  and  push  that  down 

2 

3)  Form  c2  and  push  that  down 

4) F o r m  d and  add from push- 2 

down l i s t  

5) -Divide  into  push-down  list 
and  s tore  result 

Two  basic  types of operat ions  are   required:  

1) A means €or entering  quantities  into  the  push-down  list.  These 
may be specia ' l   instructions  which  then  require  no  address  word  to  re- 
ference  the  push-down  list.  They must be  capable of entering  double or 
t r ip le   p rec is ion   sca la rs  or vectors.  

2) Means by which  instructions  may  reference  the  push-down  list  in- 
. stead of an erasable or  fixed memory location.  This  facility must be avail- 
able to most  of the  single-address  awithmeiic  instructions. 

Push down capabiliti.es  are  provided  by  the  following  instructions: 

- 2 7 -  

L 



I I '  

; I  
PUSH Pus11 down MPAC 

1 

i P D D L  X Push down MI-SAC a'nd 
re-load  with D (X) 

I! 

, I  P D V L  X Push down MPAC and 

r e  -I.oad with V(X). 

T o  signal  to an instruction  the fact that it should  push  up  for its operand, 
we  will  adopt  the  economical  convention  that ii no addres s  is supplied to  an 

op  code  that   requires  an  operand,  the  operand is taken  from  the  push-down 
list. Thus, 

x = a(bc 4- de) 

would  be  coded as follows: 

DLOAD . DMP 

B 
C 

PDDL D M P  

D 

E 
' DAD 
. ' DM.P 

A 
STORE X 

DAD pushes  up  for its operand  since  DMP is recognized as an op code in- 
stead of an addres s ;  it u ses  bc which was entered  hy PDDL. 

This  push  up  technique  recluires  differentiation hetweell op  code  words 
and  address  words.  i'his requirement is fulfiled by pa i rs  of general   opera- 
t ion  codes  and  addresses of ari thmetic  instructions;   pairs of general   op 
codes have bit 15 = 1' and  these  operarid addresses h a v ~  bit 15 = 0 since  they 
are confined  to one-half of fixed memory. Unfortunatel.y, no distinction may 
be  made  between  store  codes and operand 

-28-  



/ 

addresses.  Such  conflicts  (which  do  not arise too  frequently in practice) 
are resolved by a special   no-address  r ight  hand  operation  code: 

STADR  Recognize  store  code 

This   code  may be used  to  compute 1 

x = ab  4- cd , 

DLOAD DMP 
A 
B 

PDDL  DMP 
C 
D 

DAD STADR 
STORE X 

STADR causes  the Y U L  sys tem  to  store the STORE instruction  comple- 
mented. During execution, DAD pushes up and  then STADR picks up the 
store  code,  complements  i t ,   and  executes  i t .  

The  following  instructions  will  take  their  argument  from  the  push- 
down list: if no  address  (i. e . ,  a vacuous  address) is given: 

BDDV DOT VLOAD 
BDSU D SU VPROJ 
BVSU I'D DL 
DAD PDVL vxsc 
DDV SIGN vxv 
D m A D  TAD VI sc 
D M P  TLQAD .- 

D M P R  VAD . 

vsu 

In addftion, S'rODL and S'I'OVL will  push up if no  load  address is given. 
In the  previous  examples,  the  flow  diagrams  were  in  what  might  be 

. cal led  normal   form; i. e .  , such  that  no  node  had  more  than  one  output 
link.  Such  situations  are  entirely  covered by PDDL and  PDVL  with  the 
push u p  f ea tu re  of arithmetic  instructions. When a sinall expression  ap- 
pears several t imes   i n  a larger expression,  the  desire to compute the 

. . smaller expre:;sion only once leads to  non-normal flow graphs.  Consider 

-29 - 



a 

e 

d \  a 23 

The pT,J$I-l instruction is designed  to  accommodate cases such as this:  

whenever  the result of any  node is needed by more than one other  node, 
it.may be retained  in the push-down list for   future  use without  disturbing 

the present  computational  flow. This example is coded as fol.lows: 
t 

DLORD DiKP 
A 
B 

PUSH SQRT 
D M P  
D SU 

. 5 D P  
STORE X 

m e n  two  different  computations  must be formed with the same  inter-  
mediate result before  that   result  can be  discarded, a different  situation is 
encountered: 

a f b:t c 

-30- 



L) LOA D DAD 
A .  
B 

PUSH . DAD 4 

C 

P D D L  
DSU DDV 

c 
STADR 
STORE . x  

PDDL  (and PDVL) with no address  given may be thought of as an  exchange 
with the last quantity  to be pusheti down. Any type of quantity  (vector, etc) 
may be pushed clown even  though a sca l a r  is pushed up in  the case of PDDL, 
and  similarly  PDVL  may  exchange a sca la r  for a,veci;or. 

When  one expression is cornnlon to severa.1  equations,  STODL and 

STOVJ, rnay be  used  in a similar  fashion: 

e 

0 

CWT = COS(WT) 

DLORD D M P  
W 
T 

P J S H  
STODL 
cos 
STORE 

SIN 
SWT 

cw rr 

-31 - 



Frequently,  it  is des i rab le   to   address  a quantity  saved  in  the above 
fashion  more than once, This is facilitated by providing  another  method 
of addressing the area the  interpreter  uses fcr the push-down list. The 
push-down  list,  index regi,.:ter:s, s tep  registexs, 2nd r e tu rn   addres s  are 
contained  in a 43 word  work area assigned  to  ench  interpretive job: 

IV(MPAC 

I V(MPAC)I after UNIT  

JAL, } 

1 

""""x 

Push-down 
list, and  
temporary  
s torage 

34- 35 

36-37  

x1 
x2 
s1 
5 2  

QPRET 

"- 

"" 

""""1.- 

""" 

"" 

""1 

1 38 words  total 

Five  such  areas  are  availabli .   to  accommodate  up  to  f ive  interpretive 
jobs in  'partial  stages of complct ion.   Regis ters   in   this   area  are  not di-  
rectly  addressable  si.nce  any of the  f ive  may  be  in   use.   Addreises  0-43 
are reserved  f o r  direct ly   addressing a job's work area and at  execution 
t ime,   are   interpreted  to  be  relative to the beginni.ng of the work area ct~r- 
rently  in  use.  The  push-down  list  occupies  locations 0-3710; however, - 

any  such  registers not used by push-down  operations  may be used for  
quasi-long-term storage by using direct   addres-ses   in  that range.  Push- 
down list manipul.ations use a rnov8.1:)le pointer, PUSHLOC whi.ch is ini- 
tialized kt r eg i s t e r  0 by  the EXElCUTTVE. A push--dovrn  operation stores 
MPAC at locations  beginning at the address in PUSIILOC, ddvancing 
PUSIILOC to the first word after the s tored array.   Push-up  operations 
regress the  pointer  until.  it  points  to  the first word  in  the  operand,  and 
this value supplied a s  the operand acldress for  instruction  execution.  .The 

10 



first   cpantity  pushed down may be Eound in   reg is te r  0, etc.  Quantitieo 
written  into  the work  area by push-down operations  remain  intact   unti l  
they a re  writ ten over. 

U at  any t ime it is desired  explicitly to' change PUSMLOC, the in- 
struction 

SETPD x Set PUSI-TLOC 

will set PUSRLOC to  any loca l   e rasable  addresG as specified by X. Of 

course  to  avoid  confusion,  the  value of X shou1.d be  restricted so that opera- \ 

tions are confined always within  the work area. 
Returning to  the  original  example of sines  and  cosines,  suppose we 

D LOA D 

PUSH 
STODL 

cos 
STOD L 
DAD 

D M P  
W 
T 
SIN 
s r N W  T 
0 

COSWT ' 

PUSH 
PHI 

SlNWT + P 

- 3 3 -  



0 as well  with wt 4- $ in 0. 

highly  unusual al-gebraic forms whose economized  nbn-normal graphs do  not 
yield to push-down  list  strategies. An examp1.e is the following: 

This  al ternate addressing mode  may  be  used to accommodate 

Assume  the  push-down  pointer is at  0 initially. This computation 

may be coded as foll.ows: 

D LORD D M P  
A 

B 
P D D E  D M P  

C 
D 

PUSH DAD 
0 

PDDL 

-34- 



. The  push-down  list may a lso  assist; i n  vector  definition  operations. 

The  no-address  instruction 

then ’v” can be defined as follows: 

DLOAD  PDDL 
€3 

DPZERO 
P D D L  DCOMP 

A 
VDEF 

Scalar equations  have  been  used  in  the  previous  discussion  for  sim- 
plicity.  The  push-down list s t ruc ture  may also be used  for vector  compu- 
taions, as the  following  example  illustrates: 

DLOAD SIN 
THETA 

vxsc PDDL, 

uy. 
TI-IETA 

cos vxsc 
- ux 

VAD STADR 
STORE UTHE TA 

- 3 5 -  



two roots: 

Assume initially that a,  h ,and c are  in DIA), DlB) ,  and D(C) , and 
that the push-down pointer is at OOD. %'his subroutine is called as 

follows: 

or 

- 3 6 -  



QROOTS 

i 

! ' I  

DLOAD 

DCOMF' 

DSQ 

DMP 

SQRT 
DAD 

S TODL 

BDSU 
DDV 

STORE 
RVQ 

s12 1 

n 

PUSH 
PDDL 
A 
BDSU 
C 
PIJSEl 
DDV 
0 OD 
A 
ROOT 1 

A 
R OOT 2 

LOAD  codes are usually 
only  needed at the  begin- 
ning of subroutincs.   More 

' frequently S'T'ODL may  he 
used. 
-b/2  replaces D(OOl3) 
b2/4 replaces  D(02D) 

BDSU pushes up to   form 

b I 4  - ac. 2 . .  ic replaces  D(02D). 

-b/ 2 

This   re turns   to  call.er with r l  as D(ROBT1) and r2 as D(ROOT2) 

and  D(MPAC). 

-37- 



a, 
l3xecutj.m Times. 

A ,  Store,  Load, and Push-Down Instructions. 
L 

STOXYE x Store MPAC , 6 2  m. s. 
-""""_I__ _." I """"" 

STODL x Store  MPAC 
Y and re-3.oa-d in  D F  1. 24 m. s. 

_I .-.""".. "_ """ __" "" __ 

STOVL x Store MPAC 
Y and re-load as Vector 1 .43 In. s. _"""".""""- 

-STCALL x Store MPAC 
Y and CALL a Routine ""---- 1.40  m. 6. 

I .  

D(MP.AC), T(MPAC), o r  V(MPAC)  replace D(X), "(X) o r  V(X), 
leaving the   s tore  mode unaltered.  Call  the  routine  at Y,  leaving a 

r e tu rn   addres s  (of the  location  after  the  second  address) in  QPRET. 
Both  addresses  must be direct .  

DLOAD X Load MPAC  in D P  . 64 m. s. 

(D(X), 0) become 'I'(MP.AC), setting the   s tore  mode t o  DP,  

""I_." ".-.-."" __ "-.- "- 

'Address  may be d i rec t ,  indexed o r  vacuous. 

TLOAD X Load PIIPAC in T P  .77 r n . R .  "_"" "" "." """". -.""" 

- .  Same as DLORD except T(X) becolne T(MPAC) and store mode 

is set to TP, 

- 313 - 

f 



i 

' VLOAD X Load MPAC  with a Vector . 9 1  m. s .  

Same as DLORD except; V(X) become V(1VIPAC) and store mode 

".----"ll.__l "- """ " 

is se t   to   vec tor .  

""11 SLOAU x Load MPR.~-i~Single-,Preci.sion -.- .74 m. s. 

PDDL X Push 'Down and 
load MPAC in D P  ".- ,91 m. 6. ""- 

D(MPAC), T(MPAC) or V(MPAC) are  pushed  down; (D(X), 0 )  be- 

come T(1VLPAC) with  the  store  mode set t o  DP.  X rnay be direct ,   indexed, 
o r  vacuous. 

PDVL X Push  Down an'd load 
MPAC  with a vector " 1. 14 In .  6. ""- 

Same as PDDL except V(X) become  V(MPAC)  and  the  store mode 
is set to   vector .  

PUSH Push Down . 5 5  m. 8. 

SETPD X Set  Push-down  Pointer . 5 8  m. s. 

Set the Push-down  Pointer PUSHL,OC to  X ,  where X is in  local 
e rasable   memory .  X must  .be d i rec t ,  

- 39 - 



- 40 - 



C. Vector  Arithmetic  Operations. 
, Al l  addresses may be  direct,  indexed,  and any but MXV and VXM 

may  have  vacuous  addresses. 

VAD X Vector Add , 9 2  m. s. 

v(MPAC) 4- V(X) repl.ace V(Ml?AC). Set OVFIND on overflow  in 

"_1_ """"- 

any  component,  leaving  the  overflow  -corrected  result. 

e 

vsu X Vector  Subtract 92  m. s .  "._I_ .".1"""" 

V(1VI.PAC) - V(X) replace V(MPAC). Set OVFIND on overflow in  

any component, leaving an  overfl.ow-corrected  result. 

e BVSU X Vector "II Subtract F rcm 1. 17 m. s ,  

V(X) - V(MPAC1 replace V(MPAC). §et  OVNND  on  overflow of 
any component , leaving a n  overflow-corrected  result. 

DOT X Vector Dot Product  3.08 m. s .  . -  "- I-___ 

V(MPAC). V(X) replace T(MPAC), setting  the s to re  mode to DP. 

Set  OVFIND i f  overflow  occurs,  leaving an overflow-corrected  result. 

vxsc X Vectpr  Times  Scalar '3.27 m. - s .  

If the  initial  store  mode is Vector,  each  component of V(MPAC) 
. is nlultipl.ied  by D(X), the rounded  products  replacing.  their  respective X 

components of V(MPAC). If the initial  store  mode is D P  or  TP, change 
it  to  Vector,  and  each  component of V(X) is multiplied by D(MPAC) to  
form V(MPAC) as ahove. 

- 4 1  - 

i 



I 

I 
1 

v/sc __I_ 

x Vector  Divided t,xSc* c~ 1 a r  5.39 rn, s. 
" """" 

If the  initial s to re  mode is Vector,  each  component of V(MPAC) 
is divided by D(X), the Dl' quotientf;  replaci.ng their   respect ive com- 
ponents of V(M1'AC). If the  initial  store  modehiis DP  o r  TP, it is 
changed  to  Vector, and each  component of V(X) is divi.dcd by D(MPAC) 
to form V(1UPAC). If overflow  occurs in ally conlponcnt,  the  operation 
is terminated  with OVFINZ) set and unspecified  resu1.t~ in MPAC. 

VXV x Vector Cross Product  4. 98 m.s. 
"I . " - - - " " ~  ".""".- "" 

V(MI?AC) 2 : ~  V(X) replace  V(MPAC). Set, OVFIIVD i f  overflow 
occurs  , leaving  an  overflow-corrected  result. 

VPROJ X Vector  Projection 5.75 m. - 6 .  
cI__ "" ""--.---"-J""---- "- 
[V(MPAC). V(X) J V(X) replace V(MPA.C). Set OVFIND on over-  

flow, and  leave  the  result  obtained with overflow-corrected ' [  V(MPAC). 

vm].  

VXM X Matrix Pre -Multiplication 
b , u e c t o r  -~ -_ 8.98 m.  s .  

. ( V ( M P A C ) ~  M ( x ) ) ~  replace ~ ( I V I P A C ) .  S e t  OVE'IND on  overflow, 

".I__ 

leaving an  overflow-corrected  result .  

MXV X Matrix  Post-M.ultiplic a t '  Ion 
by Vector  8.97 m.  s .  ". - "- 

M(X) V(A4PAC) replace V(MPAC). Set OVFIlVD on overflow, 
leaving a.n overflow-corrected  result. 

D. Scalar  Functions. 

SQRT D P  squa re  Root 

SQRT (DfMI'AC)) replace T(PJfPAC); i. e .  the initial  contents of 
MPAC are  normaliked,  the D P  square root of the  normalized number  
computed, a n d  tha t   resu l t   unnormal i~ed  s o  that M P A C  3- 2 has  marginal. 
signifigancc.  Receipt of an  argument less than causes an abol't. 

__I """" l_ll."."." 1.94 m. s. 
" "- 

- 4% - 



ARCSIN (RSIN) D P  Arc-sine _I 9.26  m . s .  

. '(1(%7r)Arc-sine. (211(Ml'AC~) replace T(h4PAC). This is the in- 
v e r s e  of the SIN function.  Receipt o! an  argument   greater   than . 5001  

in  magnitude  causes an  abort. 

- 43  - 



ABVAI, Vector  Length __ ."""".." II_.""- . 3 .  86 rn. s .  
""P "I"-- -..- 

IV(MPAC) I become T(MPAC),  changing  the store mode  to DP. 
In addition, I V(MPAC)I  replace D(34.D). 'Ihe resul t  is z e r o  if IV(MP/lC)l 

<2"': IfIV(MPAC)/k 1 s e t  OVE'IND to  indicate  unspecified  result. 

""- VSQ Square of Vectoi- "_."-._"I._ Lenpth 2 "". 2 . 2 1  m.  s .  

' (V(MPAC)I  become  T(MPhC),  changing  the  store mode to D P .  

e. If 1 V(iPAC)I> " 1, se t  OVFIND and leave a n  overfl .ow-correct~d result .  

VCOIVI P Vector  Complement , 6 3  m. 8 .  -." "." """""- 

F .  Shift  Instructions. 

1. Short  Shifts 

SR1 Scalar  Shift  Right  .85 m. s .  
SR2 .85  m. s. 
S R 3  , 8 5  m .  s .  
S 134 .85  rn. s. ""."_ """" ""..I__ 

- 41 - 



T(MPAC)X 2’j replace T(M.PAC),(j = 1,2, 3,4) .  If significant 
bits. are lost ,  set OVFIND but leave the overflo\nl--corrected  result as 

S R l R  
+ SR2R 

Scal.ar Shift  Right 
and Round 

. 99 m. s. 

.99 m.  5. 

SR3R 
SR4H 

. 9 9  m.  s .  
, 9 9  m. s. 

””------- 

S L l R  Scalar  Shift Left 
SLBR 
SL3H 
SL4R 

, a8  m .  s. 
and  Round 1. 10 m.  s. 

1. 32 m .  s. 
1.54 m .  sL 

”” 

T(MPAC) x z + j  is rounded  to a DP. number R and ( R , o )  replace 

T(MPAC) ( j  = 1 , 2 , 3 , 4 ) .  If overflow  occurs,   set  OVFIND and leave  the 
overflow-corrected  result   as  T(MPAC). 

VSRl  Vector  Shift  Right 2. 01 m.  s. 

VSR2 2 .01  m . s .  

VSR3 2. 01 m. s. 

2. 01 m. s. 

2. 01  m. s .  

and Round : 

vs rc4 2.01 m.  s. 

VSR5 
VS li G 

VSH8 2.01 m.  s. 
vs I3 7 2 . 0 1  1n.s. 

”------”----- ””””--*” 

c 



VSLl 
VSL:! 
vs 1.I 3 

, 81 m. 6. 
1.18 1m.s .  

1. 55 m .  s. 
VS 124 1. 93 m. s. 

VSLS 2. 30 m. s .  
VSLG 2, 6 8  m. s .  
vs L1 3 ,  05 m.  s. 
vs I, a 

h 

_I “” -... I 3.43 m. s. 

$;ach colnponent of V(MPAC) is replaced  by  the  original  multiplied 
by 2 ‘j ( j  = 1(1)8). I€ over f1 .0~  occurs in  in,  component,  leave  the  over- 
flow-corrected result and set OVFINL). 

e 
2. General   Shifts.   Addresses  may  be  direct  o r  indexed. 

SI3 x General Scalar Shift 1. 38 m. s .  

Right +. 2 3 INTEGER m ,  s .  X 
Î _ ~ ””._” ”” ____ -1.4 
T(MPAC)X 2-x replace T(MPAC) where - 4 2  < X < 42 ( X  can  be 

negative  only if  the  address was indexed.  Address  1i.mits  are 0 < X < 42 

if  direct  and -128 <Xs < 126 i f  indexed. Xs ’ i s  the  stored  address  before 
index  modification; X is the net a’cldress in any case .  On overflow leave 
the overflow-corrected res’ult and  set  OVFIND. 

SL x General Scal.ar Shift 3. .  03 m.  s .  
Left +. 2 2  X m.  s .  

II 

Same as SR except  that T(MJ?AC)Zx replace T(MPRC).  

SRR X General Seal.ar Shift 1. 5 2  In. s. + 
. .  Ri@ and  Rounc.l l_-ll . 23 1NTE:GEE:R (X1141 ”” m. s. 

Same a s  SR except that T(kIPAC)X Z-x is rounded t o  a Dl’ number 

R and  (R,O) replace T(MPAC). Address   l imits   are  0 < X <  29 if direct .  

SLR X‘ General Scalar Shift 1. 18 111. S .  4. 



i 
I 

VSH x General  Vector  Shift 2 .  6 1  in. s. 

VSL, x General  'Vector  Shift . 8 9  m. s. 
I Left -I-, 37 X m. 6. , ,"_I_ "" "- "" ___ ""_ 

Each  component of V(R4PA.C) is replaced by the  original  component 
multiplied by Z , On  overflow of any  component,  leave  the  overflow- 
col-rected  result   and  set  OVF'INB. If the  address  was  indexed  and  the 
result ing  address  negative,  VSR(-X) instead. A d d r c s s  l i m i t s   a r e  0 < X < 2 8  

if  direct .  

X 

3.  Normalization.  Address  may  be  direct o r  indexed. 

- - +. 2 1  N m. s. 

An N is found  such  that 1 T(MPAC) 1 Z N  - > , 5  provided  T(MPAC) f 0. 

-N replaces  S(X) and  T(MPAC) X aN replace 'r(MPRC). If T(MPAC) = 0, 

-0 replaces S(X) and  'I'(MPAC) a r e  unchanged. 

G. Branching,  Sequence  Changing,  and  Subroutine  Linkage  Instructions. 
A l l  have a direct   address  except EXIT and  RVQ. Any such  address  

except those associated  with  transition  to  basic  language  (RTB.and BOVB) 
is interpreted  as   indirect  if i t   refers   to   erasable   memory.   Any  level  of 
indirect   addressing is allowed, 

GOTO i X Go To 

Begin  executing  interpretive  instructions  at X. Q P R E T  is undisturbed. 

""." 

. 7 7  m .  s .  

GOTO is a right-hand  operation  code. 



E3egi.n execuiing interpretive instructions a t  X. A r e tu rn   addres s  
8 

is left in QPi-ZET. C.AL1, is a right-hand  operation  code. 

CGOTO X Computed . 90 n?. s .  

Y Go%o -___ _I* "_.""""""" 

The  contents of X(X in   e rasable)   a rc   added  to addres s  Y (Y in  fixed) 
and  the  address at Y + SO;) is selected.  Begin  executing  interpretive 
instructions there unlcss the addres s  is in  erasable,   in  which  case  i t  is 
interpreted as indirect. CGO'l'0 is a right-hand o p  code. 

CCALL X Computed 1. 07 m.  s. 

Y Call 
_I -_I_- """""".- 

Same as  CGO'I'O except  that a re turn address is le f t , in  QPRE?' in 

addition. CCA.LL is a right-hand op code. 

RVQ(ITCQ)  Return Via QPRET 

Begin  executing  interpretive  instructions  at the location whose 

"""" ""_ , 6 9  m. s. 
_I_ 

addres s  is in  QPRET. This may be used  to   re turn f rom a subroutine 
which  contains  no CALL or CCALL  instructions. If QPRE'I' contains 
the  address  of an  erasable   regis ter ,   the   address  is interpreted a s  an in-  

d i rec t   address .  ' RVQ is a "right-hand  op C O C I C ' I .  

SrrQ(ITA) X Store  QPRET "" . 6 9  m.  s. 

S(QPRET)' replace S(X) (X in  erasable).   This may be used  to  save 
' the return addres s  in  subroutines whi.ch contain CALI, and CCALL instructions. 

The STQ X in this case is eventually foll.ovired by G O T 0  X to   re turn.  

BPI, x ,  Branch  Plus , 6 5  m .  s. -I- 

- """-I_ """. I _I___ "" 

. 19 M.S. GO 

If T(MPAC) > 0, do a G O T 0  X. Otherwise, no operation occurs. - 

- 48 - 



i 

RZE X Hranc!h Zero . 6 5  111.6. 

+.19 m . s .  GO 

~f T ( M p A c )  = 0 ,  do ;t GOT0 X. Otherwise, no operation  occurs.  

I 

. BMN X Branch  Minus . 6 7  m. s. 
+.19 m. 8. GO 

““--l_-”-~--” I 

If rr(MpAC) < 0 ,  do a GOT0 X. Otherwir;e, no operation  occurs.  

BHI 2 X Branch High . 6  m . s .  
O r d e r  Ze ro  +.19 m . s .  GO - ””- ””- 

If S(MPAC) = 0 ,  do a GOTO X. Otherwise,  no operation  occurs.  

BOV X Branch 011 .58  m.  s .  

” ~ ” ~  .+-.””L I__ 

If OVpIND is s e t ,  re-set i.t to   zero and do a GOTO x. Otherwise,  

Overflow +. 2 3  m. s .  GO 

no operation  occurs. 

BOVR X Branch 01 . 5 8  m. s .  
Overflow to   Bas ic  , 1 6  m . s .  GO 

- If OVfliSD is set, rese t   i t  to  z e r o  and begin  executing  basic  instruc- 

”.“” -”““ 

tions at X. Otherwise no operation  occurs. .X must  be in   f ixed   mmory .  

RTB X Return  to  Basic 
”“” 

.71 m, s. 

Begin  executhg  basic  instructions  at  X. X must be in  fixed memory.  

EX1 T Exit f rom In te rp re t e r  ”” 26 m. s. 

Begin executing  basic  instructions  after the last op. code or  address 

word referenced by  the  interpreter as fol.lows: 
1) If EXIT is a left  hand op code, go to  the word a f t e r  the EXIT in- 

struction; 
2 )  If EXIT is a right ha.nd op  code, go to  the word foll.owing the l a s t  

add res s  used by the left hand op code. 
EXIT is a right-hand op code. 

- 49 -. 



I 
I 

13. Switch  Instructions 

s E rr X Set Switch 
II 111 ~ ~ "-."I""" 

1.27 m.8. 

Set  switch X to 1, 
8 

CLI3AR x Clear  Switch 1 . 2 5  m. R .  
I_i_"__ _"_I_ x_ "".. ""-11 

C1.ea.r switch X to  0. 

I N V E R T  X Invert  Switch 

Invert  switch X; i. e .  , i.f 0 , s e t  to 1; i.f 1, c l ea r   t o  0. 

II__ ".. l__l_ _""-.-."-.-" "" ~ - _ " -  1 .27  rn. s. 

SETGO X Set  Switch  1.54 m. 6. 
Y and  Go To "_- l_"__ "-.--""""- 

Set  switch X to 1 and do a G O T 0  Y .  SETGO is a right-hand op code. 

CLRGO X Clear  Switch  1.52 m. s. 

Y and  Go To 
."""_ """.- ,"_ "" 

Clear switch X to 0 and  do a GOTO Y. CLRGO i.s a right-hand O P  code. 

INVGO X Invert  Switch  1.54 m. E .  

Y and G o  To 
I - """" "- 

Invert  switch X and do a GOTO Y. INVGO is a right-hand op code. 

I. Switch Test   Instruct ions.  

BON - x  Branch if 1.26 m.  5. 
Y Switch """""-- On -t-. 2 3  In .  6. 

" 

If switch x is set to 1, d o  a GOTO Y .  Otherwise, no Operation 

occurs ,  



. BONSET X Branch i f  Swi.tch 1. 37 m.  s. 

Y On,  Settin?  Switch +. 23 m.  s .  GO 
-II_ ~ I_....""_"_"""_ L ..""""-."I """_ 
Set  switch X to 1. I€ initially set to 1, 60  a GOTO Y. Otherwise, 

no further operation occurs .  t 

BOI.%E'L' X Branch i€ Swiich 1. 30 m. s .  
Y Off,  Setting  Switch +. 23 m. s. GO 

_____I_ I."- I_"III""II_"-L"- 

Set  switch X to 1. If initial1.y c leared  to  0 ,  do a G.O'TO Y. Ciher- 

wise,  no fur ther   operat ion  occurs .  

BONCLR X Branch i f  Switch  1.35 171, s. 
Y On Clearing Switck~ _"" 1."" i I__ "" ___l___l 

+. 23 m. 9. GO 

Clear  switch X to 0. If initially set to 1, do a GOTO Y .  Otherwise, 

.- 

no further operation occurs .  

BOFCLR X Branch if  Switch 1. 36 m. s. 

Y Off, Clearin0 Switch +, 23 1 ~ .  S .  G.0 

Clear  switch X to 0. If in i t ia l ly   c lea~xd  to  0 ,  do a GOTO Y. Other- 

I_._~_I b "l_"""__"_ I_ " 

wise,  no further  operation  occurs.  ' 

B O N N V  X Branch i f  Switch 1. 37 m. s. 
Y On, Inverting  Switch +. 23 m. s. GO 

" _ll__-l__ "__I" "" 

Invert 'switch X. If originally  set   to 1, do a GOTO Y .  Otherwise, 
no fur ther   operat ion  occurs .  

BOFINV. x Branch ii Switch 1. 39 m. s .  
Y Off, Invcx.tll?g Switch +. 23 m. s. GO 

_I - "_ "" 
Invert  switch X. If originally  cleared  to 0, do a-GOTO Y. Other- 

wise,  no  operation occurs. 

- 5 1  - 



AXT, 1 X A d d r e s s  to , 7 5  m.  s .  

AXC,1 X Address  to . 7 6  m. s. 
. AXC,2 X , Index  Complemented .."" - 

-X replaces S(XT). 

LXA, 1 X Load Index  .78 m.s .  
LXA, 2 x 
SO;) replaces  S(X'r). 

""_I_ ~ l_."" 
f r o m  3-3:x.asabl.e 

SXA,l x . Store Index 78 m. s. 

sxA,2 . x  in Eramble 

S(XT) replaccs S(X). 

- _l."""""""" " 

XCT-TX, 1 x Exchange  Index  .83 m. s .  
XCHX,2 x . with Era.oable . -" ""__l 

S(XT) replaces  S(X) which  theri  replaces S(XT). 

INCR, 1 X Increment  Index . . 7 6  m. s. 
INCR, Z X 

"l_ "" "_"._ _"" """"""---"--- 

The overfl.ow-corrected sum of S(XT) a n d  X replaces S(XT). 

XAD,l  x Index Ixegister .77  I n .  s. 
X A D , 2  X Add 

The overflori;r-,correctec~ sum of S ( X . 7 ' )  axld S(X) replace S ( X r r ) .  

I - """.."."X.." I """_""l_̂ """_l"" 



I 

XSU, 1 X Inciex Register  Subtract . 7 8  m. s. 

xsu, 2 x _.I_ ._" -.._ """" ~ 

The overflo-v\r-.corrected difference S(X"T) - S(X)  replaces  S(XI'). 
b 

13x, 1 x Trans fe r  011 Indcx . 7 8  m . s .  

TIX,  2 x 
L +.26 m . s .  " GO _"_"" """ 

If S(X'l?).< S(ST) ( T =  1,2), no operation  occurs.  Otherwise,  S(XT) - 
S(S'T) replaces  S(XT) a n d  a GOT0 X is executed. 

- 

K. Miscellaneous  Instructions 

SSP X Set Single . 6 7  m. s. 
" Y Precis ion 

a 

...""-.""-."- "" 

y replaces S(X). Y may be any  constant:  arithmetic, I.ogica1, 

addres s  , etc. 

STADR Push U p  On , 2 6  m. s. 

Store Cock 
_ _ 1 1 - .  """".."- " 

. During  assembly,  the  appearance of STADIl: causes the  next  store 
code to  be stored complemented. 33uri.ng execution, STADR complements  the 
the next w o r d  to  be  referenced by the interpreter .and  enters  the s t o r e  
code processor. STADP, is a right-hand op code. 

- 53 - 



I '  
! :  



R. Scalar Arithmetic  Insiruciions (a, 11) ~~- 

DAD , 59 
D SU ' 59 b 

RDSU . 6 'I 
D 1w. 1' 1 .05  
D NI PR. 1.21  
D DV 2. 40 

. 'BDDV . 2 . 4 2  

SIGN . 61 

T A D  . 6 7  

DOT (b) 

VXV (b) 
VPROJ (b) 

VXM 
MXV 

D, Scalar  Functions 

SQR.T ( c )  
SIN 
COS - 

ARCSIN (c)  

3. 00 

4. 90 

5. 6 7  

8. 90 

8. 89 

1. 86  

5. 55 

5. 72 
9.18  

ARCCOS ( c )  9. 04 

DSQ . . 6 8  
ROUND ( c )  . 4 0  

DCOMP .44 
ABS . 4 0  

(,I) Add .02, ii MPAC V 

(1) Add . 21 i f  initi.al MPAC scalar 

(1) Add . 32 if initial MPAC sca.l;ir 



i 
. I  

e 

SR. 1 

SR2 
SR3 
SR 4 

SI21 
SL2 
SL3 

SL4 
SRlR. ' 

SR2R 
SR3II. 
SR 4 R. 
SI21 E3 
SLBR 
SL3R 
SL4R 

b) Vectors 
VSRl  
VSR2 

vsn 3 

VSR4 
VSR 5 

G .  38 

3.  79 
2. 13  

. 55 

. 59 

. 7 7  

6 77 
, 7 7 

* 7 '7 
.G4 
. 8 7  

1 . 0 9  
1. 31 

* 9 1  
. 9 1  
. 9 1  
. 9 1  
. 8 0  

1 . 0 2  
1 . 2 4  
1 . 4 6  

1. 93 
1 . 9 3  
1 . 9 3  
1 . 9 3  
1. 9 3  

- 56 .. 



VSR G 

VSH 'I 
vsrz 8 

VSLI. 
VSL2 
VSLJS 
VSL4 
VSL5 
VSLG 

1 . 9 3  
1 . 9 3  
1. 93  

. 7 3  
1 . 1 0  
1 . 4 7  
1 . 8 5  
2 . 2 2  ' 

2. G O  

VSL'I 2 . 9 7  

VSIJ8 3 .35 

2) General  Shifts (a) 

a) Scalar 

8 

'SR 1 . 3 0  -I- . 23R 

S L . 9 5  4 . 2 2 N  

SRR 1.44 4- , 23R 
S L R  1. 1.0 -I- . 22N 

b) Vector '  

VSR 2. 53 + . 8213. 

VSL .81 -1- . 3 7 N  
3)  Normalization (a) 

NORM (SLC) . 80 + . 2 1 N  

R = Number of 14 place  shif tsrequired;   e .  g. SR 19 taltes 
1. 53 m. s. 

N = Number of places shi.fted. 

G. Branching,  Sequence "" Changing, and Subroutine Ti.nka.ge 1 - 1 -  Instructions - 
" 

"GO" represents additional  execution i f  sequence,  change  performed. 

GOT0 (d) . 69 

CALL (d)  . 81 

CGOTO (b, cl) . 82 

CCALI, (b, d )  . 99 



. 6 1. 
069. 

, 5 7 -I- , 1 9 GO 

, 57 -1- * 1.9GO 
. 59 4- . 19cm 
, 55 -I- * 19GO 

. 5 0  -+ .23GO 

. 50 4- . 1GGO' 

. 6 3  

. 18 

1.19 

1.1'7 

1. 19 

1.. 4G ' 

1 . 4 4  

1 . 4 6  

BON 
BOFP 

BONSET 
BOFSET 

BO NC IJR 
BOFC JAR 

BONINV 
BOFINV, 

1 
J. Index Instructions """""- 

AXT 
, AXC 

L,XA 
LXC 

1. 1.8 + . 2 3 G 0  

1. 1 9  -1- . 23GO 

1. 29 -t . 23GO 

1. 31  + .23GO 

1 . 2 7  + .23GO 
1 . 2 8  -t I 2 3 G 0  

1 .  29 + .23GO 

1. 31 + . 23G0 

. 6 7  

. 6 8  

. 70 

. 7 0  



I 

I ssp , 59 

STADR. . 1 8  

NOTES: 
-I_- 

(a )  Add , 18 m. s, if  add res s  i.s indexcd. 
(b) Add . 04 m. s. i f  push  up  called for .  
(c)  Average  t ime 
id) Add . 26 111. s. for   each  lcvel of indirect   addressing. 

XI. Y U L  Assembly   Formats  
I_ 

The  following is a discussion of the punched-card  formats used in pre-  
paring  interpret.ive  programs,  and of the  corresponding  encoding  performed 

by  the YUL as'semb1,er. The l a t t e r  is intended  primarily  for  those who wish 
to ,prepare  octal   correct ions  in   the  course of program  check-out.   The  term 
"ADDRESS" is understood  to  be  an  octal o r  decimal  integer, o r  symbol  with 
or without an  octal   or  decirna.1  modifier.  Numbers  in  parentheses  denote 
card columns at  which  fields of information  begin. If operation OF' r equ i r e s  
two  addresses ,   the   f i rs t  is labelled O P  (1st)  and  the  second O P  (2nd). 

General operation  codes  are  submitted  in one of the  following  formats, 
with  the  encoded,rcsult on the  right: 

I 

(9) (1 8) (25)  15 14  
(SYh'IBOL) ' OP1 
(SYMT30L) OP2 OP2 

""""". 

- 59 ". 



1 

Location 

0 - 42  

loo8  - 13778 loo8  - 137'78 @ ' l o o 8  .- 137'78 

I33, 1400 -. E>7, 1777 14.008 - 1.77f78 14008 - 17778 

04,2000 - 17,  3777 04, 2000 .- 17,  3777 04, 2000 - 17,  3777 

1 0  0 - 4210 
- 0 - 4 2  10 

' 21, 2000 - 3'7, 3777  01,  2000 - 17, 377'7 21,  2000  "37,  3777 

LOC a e' Ion 

0 - 4210 0 - 4210 

- loos  - 13778  1008 - 13778 

E 3 , 1 4 0 0  - E.7, 1777  1400 - 1777 

04, 2000 - 17,  3777 (Illegal) 

- 21, 2000 - 37, 377'7 (Il legal)  21 ,2000 " 37,3777 



General  operation codcs v;hose addres s  is restr ic ted to one half--memory 
and  erasable inclu-de: 

EDDV DDV D 0'1' PDVL VAL, VXM 
BDSU DLOAD DSU SLOAD . VLOGRD vxsc 

' BVSU DMI" MX v T A U  v 1'" vxv 
DAD D n l  pri PL)DL 'I'LOAD V S U  v/  sc 

Non- y'acuous addresses €or  the above a r e  submitted and processed as be-  

suffix  asterisk. 
General  operat.ions v;hose address  may referencc all of interpretive 

program  memory (both half-memories  and crnsab1.e memory)   a re  as 
follows: 

BISIZ BOFSET (2nd) BOV, .GOTO 
BNIN BON B PL INVGO(2nd) 
BOFF(2nd) ' 130NCLR(211d) EZ12 SE TGO ( 2 nd) 

ROFCLR. (2nd)  RONINV(2nd) CALL TIX, 1 

BOFINV (2nd) BONSET(2nd) CLRGO(2nd) TIX, 2 

Address  for these  operation  codes a r e  submitted  and  pr'ocessed a s  follows: 

(9) (18) (25) 15  1 
ADDRESS r T + u e  " 

General  operati,ons whose addresses   a re   l imi ted  to er.asable memory 
are divided  into two classes:   those  whose  address is indexable  and those 
whose  address must be direct.  The former c l a s s  is as follows: 

CCALL(1st) NORM SIC N 

cGorl?o( 1 st) SE 'I? PB SSP( 1 s t )  



; i  

.' 

Some general  operation  codes may emp1.oy any  single  precision,  con- 
stant as their  "operand  address".  The are the  following: 

AXC, 1 RXT, 1 INCR, 3. SSP( 2nd) 
AXC, 2 Axrr, 2 INCR, 2 

They  may  employ an interpretive  address  constant referring to  any  inter-  
pretive  program  me,Inory: 

I 

- 62 - 



* 

e 
, 

Input  and  result,ing address a re  as follows: 

(9) (18) (25) 
ADDR.ESS 
ADDRESS, 1 
ADDR.ESS, 2 =- -.” 

For  example, SR G has  op  code  115  and  address  00607; SRRs 0 - 3, 2 

has  op code 117 and  address  76201. 

All. switch  operations follow f rom op code 162.  The first (or only) 
address  contains  three  f ields of information  which  specify  the  desired 
action  and  switch  number:  operation  type  in  bits 5 - 8, switch.  bit  posi- 
tion in bits 1 - 4, and  switch word numher. in   bi ts  9 - 10. Operation types 
set b i t s  5 - 8 as follows: 

BOFF 00310 ’ BONSET, 00000 

HOFCLR 00240 CLEAR 00260 

BOFIVV 00 140 CLRGQ 00220 

I3OFSE%’ 00040 mvmw 00 I 60 

BON 00300 l’NVC;O- 00120 

EONCLR 00200 SE T OOOGO 

BONIWV 00100 . SETGO OOO%O 



i 
. I  

00000 

02000 

04000 

06000 

10000 

11,000 

14000 

lG000 

20000 

22000 

24000 

26000 



34000 

36000 



I 

I 

Suffix cha 
I 

SC 

. . .  ,' ' Symbol.ic Code 

130 

1 so 
050 

040 

01 6 

Pa. &e 

10, 43 
" 

11, 1'7,44 - 
10, 4.3 
10 43 

20, 52, 62  

20, 52, 6 2  

_I_. 
' I-" 
I 

-.- 
20, 52, 6 2  

20, 52, 62 
I 

- 

7, 17, 29, 40, 69. 
" 

7, 17, 29, 40, 6 1 

16, 49, 61  

16, 49, 6 1  

19, 50, 6 1  

19,  51, 6 1  

19, 51, 61  
19, 51, 6 1  

19, 50 

19, 51, 6 1  

19, 51,61 

19, 51, 6 1  

18, 49, 6 1  

18, 49,62 

- 
I 

" 

- .  

" 

- 
I 

" 

I 

- 
- 
" 

"- 
16, 18, 6 1  ". 
8, 19, 29, 41, 61. 

" 

16,49,C1 ". 



000 

126 

066 
062 

162s 

162s 

026 

022 . 

14, 48, 61  

15, 48, GI, 6 2  

15, 48, 63., 6 2  

19; 50 

1.9 3 "._ 50,61 
10,43 

". 

- 
- 
" 

" 

7, 17,  29, 40, 61 - 
10,43 

7, 17, 20,  4 0 , 6 1  
- 

- 
6, 26 ,  38, 6 1  

7,29,40, 61 

7, 29, 40, 6 1  

8,  17, 29, ." 41, 61  

1 0 , 4 3 , 6 1  
7, 17,  28, 40, 61 

" 

"_ 

I_ 

- 

16,49 - 

14, 47, 6 1  - 

20, 52, 6 2  

20, 5 2 ,  62 
19, 50 
19, 50,'61 

- 
- 
I 

" 

20, 52, 62  
I 

20, 5 2 ,  6 2  

20, 52, 6 2  

20, 52,62 

" 

- 

13, 47, 6J. - 



a 

e 

O ~ ~ ,  053:!: 

061,063S:t 

170 

070 

152 
160 

162s 

1625  
175 
0 5. I., (31.3 >k 

020 
l l t i G , 1 1 7 6 + ~  
04l, 043* 
1156, 11.7G* 

024 

004 

064 

0 44 
124 
104  
3.64 
144 
010 
115G, 1.17G* 
1 ItiG, 11 ‘?G*: 
034 
014 
074 
054 
1 3 1  

114 
174 
154 

- 68 - 

28, 29,  31, 39, 61 
28, 29, 31,  39,  61 8 

28, 30, 39 

I_ 

- 
- 

,. 
10,1’7,43 

1 5 , 4 a  

1 9 , 5 0  
19, 50, 64. 

33, 39, 6 1  

7, 29 , 40, 6 1 
1 0 , 4 3  

”. 
16, 49, 6 2  
” 

I 

” 

-. 

” 

_I 

1 3 , 1 7  46 

6, 39, 6 1  

13, 17, 46 

11, 17, 45 
131,17,45 
1 1 , 1 7 , 1 5  

- 
2- 

. -  

-* 

I 

- 

11, 1 7 , 4 5  
11, 17, 45 
1 1 , 1 7 , 4 5  
11, 1 7 , 1 5  
11, 17, 45 
1 0 , 4 2  

“ 

I 

” 

I 

_I 

- 

13,  17, 46 
13,  17, 46 

- 
I 

1 1 , 4 4  
li ,  45 
1 1 , 4 4  
1 1 , 4 5  
1 1 , 4 4  
1 1 , 4 5  
11,44 

” 

I 

I 

” 

” 

” 

- 
I $5 



VAI) 
VCOMP 

VSLl  
VSr"J2 
VSL3 
VLS4 * 

VSI.3 
VSLG 
VSL? 
VSL8 i 
VSR 
VSR 1 

VSR2 
VSR 3 
VSR4 
VSR5 

i 

20, 53, 61, 6 2  

25,53  
- 

6, 38 

6,  29, 31,  38 

6, 38 

6 , % 9 , 3 1 ,  38 
15,48,02 

20, 52, 62 

"." 

-.I 

* " 

- 
- 

-.- 

20, 52, 62 
I_. 

" 

'7, 17,  29, 43., 6 1  

6,  29, 38 ,  61. 

21, 53, 61. 

21, 53, 6 1  

" 

"- 
- 
I 

11, 17, a4 
I 

8, 17, 29 41, 6 %  

11, 41 
3 5 , 4 4  

6, 29,  39, 61 
8, 17, 29, 42, 61  
13, 17, 47 

8 " 

" 

-.I 

- 
- 

12, 17,46 

12, 17,46 

12, 17, 46 

- 
- 
- 

12,17,46 

12,. 17, 46 

- 
- 

12, 17, 46 

12, 17,  46 

12, 17, 46 

13, 1'7, 47 

12,45 

12,45 

12,45 

12,45 

12,45 

- 
- 
I 

I 

I- 

" 

- 
"- 
I.- 

_.." 



I 
' I  

XAD, 1 
XAD, 2 
XCI.X, I. 
XCFE, 2 
xsu, 1 
xsu, 2 

I06 
102 

056 

05% 
116 

I f 2  

12,45 

12,rlli 
12,45 

11, 1.7, 44 

" 

" 

" 

CI 

8,  1.7, 20, 41, 61  
8,17, 42, 61 
a, 29,41, GI 

" 

"... 

I 

8, 17, 29, 42, G I  
8, 1'7, 29,122, 61  

- 
- 

20, 52, 6 2  
" 

20, 5 2 ,  6 2  __ 
20, 52, 62 

20, 52,62 
"- 
".. 

20, 53, 62 

20, 53, 62  
- 

. .  
" 

i 

f 

- 70 - 


	SL4

