FLIGHT SOFTWARE FAULT TOLERANCE VIA THE BACKUP FLIGHT SYSTEM

Terry D, Humphrey and Charles R. Price
NASA Lyndon B. Johnson Space Center
Houston, Texas 77058

ABSTRACT

A generic software error in the guadruply redundant primary flight system could result in the
catastrophic loss of Space Shuttle vehicle control in the hostile environment of ascent or reentry.
The Space Shuttle backup flight system was designed to protect the crew and vehicle in this eventual-
ity. The significant challenges met in the design and development of this state-of-the-art protec-

tive system is the subject of this paper.

INTRODUCTION

Implementation of the backup flight system (BFS) for the Space Shuttle is a major advance in
state-of-the-art fault-tolerant software in general and in Space Shuttle fault-tolerant flight soft-
ware in particular. The BFS was chartered to protect against a software fault in the most sophisti-
cated flight software system ever implemented: the Space Shuttle primary flight software (PFS). The
PFS is designed to operate a redundant set of general-purpose computers (GPC) to control an innova-
tive, multiple-element, reusable, manned spacecraft through an ensemble of flight regimes never
before encountered by a single vehicle. For STS-1, the PFS consisted of more than 400 000 computer
words of flight code, a complete test of every possible combination of branch instruction or decision
point of which would take more than 10 000 years of computer time on today's fastest computers.

To protect against a latent programing error (software fault) existing in an untried branch com-
bination that would render the Space Shuttle out of control in a critical flight phase, the BFS was
chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases
{(ascent and descent) by monitoring the activities of the Space Shuttle flight subsystems that are
under control of the PFS (e.g., navigation, crew interface, propulsion), then, upon manual command by
the flightcrew, to assume control of the Space Shuttle and deliver it to a noncritical flight condi-
tion (safe orbit or touchdown). Many technical, managerial, and operational challenges were experi-
enced by the development team of NASA and its contractors in bringing the BFS from a concept to a
working operational system, The challenges addressed herein are those associated with the selection
of the PFS/BFS system architecture, the interral BFS architecture, the fault-tolerant software mech-
anisms, and the long-term BFS utility.

CHALLENGE 1: A MANAGEABLE SYSTEM ARCHITECTURE

Central to any concept of a reusable spacecraft is the theme of higher system reliability
through redundancy of finite-lived components. In the Space Shuttle avionics, the availability of a
properly functioning flight computer is assured through the wiring of five identical GPC's in paral-
Jel. Since the memory available for state-of-the-art GPC's at the beginning of the Space Shuttle de-
velopment cycle was much Jess than the flight software requirements dictated, an early partitioning
scheme was established. For each of three flight phases ?ascent, on-orbit, descent), a redundant
copy of all critical functions was loaded in each of four GPC's and the fifth GPC was Toaded with a
complement of useful functions the 1oss of which could be tolerated. This strategy assured protec-
tion from multiple, sequential computer hardware failures, but did not address the possibility of a
software fault generic to the set of four redundantly programed GPC's causing loss of control of the
Space Shuttle. Concern for such a software fault is valid in that regardless of the number of checks
and balances that are put in place to find and eliminate specification and coding errors in major
software developments, there can be no 100-percent assurance that Tatent, potentially dangerous soft-
ware errors do not exist in the delivered product.

The obvious strategy for increasing the software relfability of the Space Shuttle was through
software redundancy, but the challenge of the problem was the form of the redundancy to implement
within time and cost constraints. Three redundancy alternatives were available: (1) increasing the
internal PFS redundanC{; (2} duplicating the PFS in another software version programed by a different
set of programers completely jsolated from the PFS programer, or (3) implementing a reduced-capability
backup system by a semi-isolated set of programers. The first alternative was not pursued because it
was felt that every practical internal measure was already being pursued by the PFS designers. The
second alternative was considered too costly and fraught with duplication of functions not essential
for a secondary system. The third alternative was selected since it afforded an additional measure
of protection that was achievable within cost and schedule constraints. The reduced capability was

35



set by a single memory load for both ascent and descent in a single GPC. The BFS also assumed the
non-flight-critical functions that had been scheduled for the nonredundant fifth GPC for ascent and
descent. The semi-isolation of the programers was achieved by having the BFS programed by a contrac-
tor geographically separated from the PFS contractor.

THE BFS FAULT-TOLERANT ARCHITECTURE

Significant challenges were faced by the designers to develop a BFS which would closely track
the PFS, protect itself and the PFS from data pollution from each other, and also be ready at any
point in the ascent, abort, or descent profile to take over control of the vehicle safely when manu-
ally engaged by the crew. To provide this capability, a technigue had to be developed that would pro-
vide for tight synchronization of the BFS to the PFS in order to prevent divergence, but that would
also protect both from inducing faults in the other. A more pollution-protective technique than that
used for PFS redundant-set synchronization had to be developed. To protect the PFS from faulty BFS
data or timing, this technique would permit no transfer of data from the BFS to the PFS.

An 1nnovative technique for synchronization of the BFS and the PFS was developed using f1ight-
critical data bus input profile tracking of the PFS that involves use of the fnput/output processor
(IOP) input data bus listen capability and the transfer of input profile and minor cycle data from
the PFS to the BFS, The BFS protects itself from pollution by erroneous input profile data by voting
on the redundant data sent to it by the individual PFS GPC's. In addition, the BFS protects itself
from input profile timing faults of the PFS by the use of its own data bus timing window thresholds
for each of the individual groups of input profile data.

To protect the BFS and PFS from pollution by erroneous data received from one another, an in-
terface design policy was established which allowed no transfer of software-generated data from the
BFS to the PFS but did allow data absolutely essential to the proper tracking of the PFS to be trans-
ferred and used by the BFS. The absence of data transfer to the PFS prevents any pollution of the
redundant PFS by the BFS. The BFS was designed to protect itself from pollution from erroneous PFS
data first, by being 1imited to the use of a small amount of absolutely essential transfer data; sec-
ond, by performing a vote on the redundant sets of data obtained from the redundant PFS GPC's; and
third, by performing reasonableness checks on the voted data.

Another challenge faced in the development of the fault-tolerant BFS was the design of a safe
method of taking control of the vehicle at any point in the flight profile without inducing control
effector transients which might endanger the crew and the vehicle. The design developed to provide
this protection required the input of engage initialization data from the subsystems via the flight-
critical data buses immediately after BFS engagement. These data were then used to ensure that subse-
quent BFS control commands did not overstress or generate significant transients on the control effec-
tor subsystem.

One of the foremost innovative techniques used in the BFS fault-tolerant design was developed to
provide for recovery from the loss of PFS-generated master events controller (MEC) sequencing as well
as for attempting recovery from BFS GPC hardware or software errors. The loss of MEC sequencing com-
mands might occur either as a result of a generic PFS software failure or as a result of the abrupt
termination of all PFS-controlled flight-critical data buses at BFS engagement. Recovery from these
types of errors is provided by the BFS software restart technique. A software restart is initiated
upon BFS engagement, and, in the event that critical MEC command sequences are found not to have been
properly performed, the BFS reinitiates the full MEC sequence of commands for the appropriate mission
event.

The use of the restart technique to attempt recovery from BFS GPC hardware or software errors
was developed to protect the BFS from transient errors and, in the case of hard errors, to continue
attempts at recovery in hopes that the error will not persist. This restart recovery involves re-
inftialization of input/output (1/0) and restarting of BFS application processing at the beginning of
a new GPC major processing cycle. The restart recovery technique provides this protection for both
the preengaged and engaged modes of BFS operation.

A MOVING TARGET: MAINTAINING TRACK OF SOFTWARE CHANGES

Unlike the Approach and Landing Test (ALT) PFS, the BFS for ALT could not be used as a base upon
which to build Orbital Flight Test (OFT) software. The BFS software for ALT was designed and de-
veloped by Charles Stark Draper Laboratories and provided backup for flight control functions only,
provided no CRT/crew interface, and provided only a very minimal task-list-type executive. Rockwell
was selected to develop the BFS for OFT and essentially started anew about 2 years behind the PFS

36



[FOT———

software development. A new operating system had to be designed and developed, all existing PFS re-
quirements and change requests {CR's) had to be reviewed for applicability to the BFS, and an overall
BFS software design had to be developed. The BFS not only had to catch up with the PFS level of matu-
rity very quickly, but then had to maintain pace with a very large amount of PFS requirements develop-
ment and software change activity. A significant amount of effort and manpower was required to accom-
plish this goal.

POST-QFT UTILITY OF THE BACKUP FLIGHT SYSTEM

The BFS was initially envisioned to be used only through the Shuttle OFT flights. The expecta-
tion was that after OFT, the entire Shuttle system design, including PFS software, would be proven
safe for operational use and, therefore, the BFS would no longer be needed. (Close to the end of OFT,
an examination was undertaken to assess the need for continuing the use of the BFS. Assessments of
the PFS software discrepancy report (DR) traffic showed it to correlate proportionally to the level
of PFS software change traffic but, even in cases in which software change traffic was small, the num-
ber of DR's appeared to decay exponentially rather than to drop abruptly. These data indicated that
Jatent software errors had high levels of persistence. This information was used in conjunction with
the projections of PFS software change traffic for future flights. It was determined that for a sig-
nificant time in the future, the PFS software change traffic would continue to remain at significant
Jevels and therefore the risks would remain high for latent PFS software errors. Therefore, it was
concluded that for at least a significant time in the future, the BFS would be needed to protect
against generic PFS software faults.

BIBLIOGRAPHY

Rockwell International Specification: Backup Flight System Program Requirements Document
Overview. Rockwell International MG038100, 1979.

Rockwe1l International Specification: Primary Avionics Software System (PASS) and Backup
Flight System (BFS) Software Interface. Rockwell International ICD-3-0068-03, 1981,

Rockwell International Specification: Backup System Services Program Requirements Document.
Rockwell International MG038101, 1982,

.

37



