
] 85 - 1690 0

AIIIDMATION OF C_ECKfX]T FOR _YHE SHUITLE OFERATICNS ERA

Judith A. Anderson

Guidance, Digital & Software Systems Division

Kennedy Space Center

Kenneth O. Hendrickson

Applications & Integration Software Section

Kennedy Space Center

ABSTRACT

The Space Shuttle checkout is quite different from its Apollo predecessor. The complexity

of the hardware, the shortened turnaround time, and the software that performs ground checkout

have proven a challenging task to overcome.

Generating new techniques and standards for software development and the management struc-

ture to control it have been implemented. New challenges await those that have been solved.

INTROE_TION

Testing of the Space Shuttle's many systems to assure that the Shuttle is ready to refly is

a complex process. This paper will highlight some of the challenges in utilizing these computer

systems in the testing of the vehicle in a timely fashion and how these challenges are being met.

HISTORY

During the Apollo program, the Saturn launch vehicle was heavily computer controlled (via

the RCA IIOA oumputers) and had virtually no cockpit control since the Apollo spacecraft was

totally separate. The ground computer programs were primarily assembly language, with very low

change rate. A very elementary user test language (ATOLL) was available for "linking" assembly

language programs and to perform simple c(mlmand verification sequences. This capability allowed

KSC to automate the last nine hours of countdown to an almost hands-off point by the end of the

Apollo program.

Where the Saturn automation was primarily a c0mmand-by-csmand serial sequencing function,

the automation of the Shuttle checkout and launch preparation is a very complex scheduling

exercise, with ccmplex operations to be performed. The tools provided were: i) the LPS system,

with its GOAL user oriented language, capable of monitoring the measurements on the vehicle aN

in the gro_d systems, and (2) the on-board computer system (DPS), which provided the linkage _o

control, in a test environment, all the vehicle subsystem controllable during flight.

CHALLENGES

The complexity of the Space Shuttle has come to haunt us frequently in our efforts to m_to-

mate our turnaround activities -- from the sheer numbers of measurements %o he m0nito_1 a_

commands to be issued to the interrelationships of the subsystems. The flexibility of _1,1_laucy

makes a highly reliable vehicle to fly, however, a difficult one to test. Our (k_rlie,_,t efforts

at automated testing were just to get the minimu_ amount of software written to l_et %]_e _ _k_e

-- we did not have time for any more. As we progressed thru the STS-I flo_, the _I to _

things faster, and more reliably became strong drivers. For manual operations, _ f_1 all tl_

many ways one could do them -- many which would not work!

We also found during the early flows that we were spending large a_mtS _f 1_%_k_w_r sitting

in the firing roam waiting for a problem to occur. As problems _lec_%_| I_ea_e of ,_5_te_

maturity, we still needed the same nL,nber of people on console monitori_1 _lat,_, _i_ _s _eitbe_

oost effective nor interesting. In order to have a cost effective s_tt_ _e |_ to _k_ _):i_i

Room mawr.

97



The shortening of the turnaround has been a constant driver to get things done faster and

more efficiently. (Reference Table I). The STS-7 turnarotu_ was 63 days and our target for

STS-30 is 28 days, a 60% reduction. This can be attacked several ways -- decrease test require-

ments, accomplish the same tests faster, and a_lish more testing in parallel.

TABLE I. FLIG_Ff vs. TU]%NARfX_D FLOW L_gGTH

FLI(_]T LENGTH

STS-I 2 years

STS-7 63 days

STS-8 49 days

STS-16 35 days (target)

STS-30 28 days (target)

SOLUTIONS

Our first approach at speeding operations up was to automate discrete activities. During
early STS-I it would take us over two hours to power up the Orbiter. This drove us to a 24

hour/day operation in just one week to avoid the overhead of the daily power-up time. We are

currently powering t_ CKrI02 (STS-9) daily in less than 25 minutes. During this time period,

approximately 500 commands are issued via cfmputer and approximately 50 switches are thrown in

the coc]q0it. How did we do it? First, each of the institutional support systems (EPDC, instru-

mentation, cooling and IllS) developed software to automatically perform each of their power up

functions with a minimum of manual intervention. Control of these programs was then centralized

at the integration console which cues each of the subsystem consoles when it is time to do a part

of their activation. Procedural steps which must be run manually are tutorially presented to the

console operator. This eliminates any unneoessary decision making in selecting the proper

support L_J's for the day and "filling in the blanks". It also allowed all measurement/feedback

information to be checked by the software.

Could these kinds of techniques be applied to other situations? Certainly, however, our

normal testing situation is not as easily predefinable on a day to day basis as power up. Today

we may want to test system A then B then C. Tcmorzx_ we may need to test A in parallel with C

and then do B. There are many drivers to the order of testing -- manpower available to do a job,

Ground Support Equipment ready, ccmpatlbility of operations (downlist/downlink formats, GPC

memory configuration, etc.) and the jobs scheduled due to unexpected drivers such as equipment
failure and replacement.

In order to automate on a global firing room basis, we first have to automate individual

subsystem functions. This is currently mlderway. To assure that these functions can then be

integrated, a common set of groundrules (standards) have been developed to assure that subsystems

can communicate with one another and with the integration console in a uniform manner.

STAN_%RDS

A set of groundrules were established to design the application software. Early efforts

concentrated on standardizing the man_ter interface. Standards were developed for the use

of color on the CRT's and on how the data was to be displayed. Standards were developed on how

the engineer wuuld use the C(_S keyboard to communicate to the application software. Later stan-

dards were developed that provided rules on how the software structure was to be designed. This

standard identified program types and the relationship of each type to the overall design of the

98



softwareset. Applicationsets weredefinedalongengineeringsubsystems,e.g., Hydraulics,
EnvironmentalControl and Life Support,Electrical PowerDistribution and Control, Data
Processing,etc. TheseApplicationSetswereassignedto a physicalFiring RoanoDnsole and

teams were established by console to produce the doct_entation and software.

Each Console Set Working Team is comprised of contractor and NASA system engineers from each

member Application Set, software specialist engineers, technical documentation, and quality

control personnel. The teams are responsible for producing console application software

requirements, software design specifications, and development and implementation of the software

itself. The resins meet on a regular basis to coordinate requirements and implementation

details. _nis highly orangized activity is opposed to the methods used earlier where a system

engineer had a broad, general set of requirements which he went off and coded to. Since most

programs were simple, stand-alone programs, this method was satisfactory. The increased level of

organization and coordination was driven by the increased complexity and interdependency of the

software which was required. Because this software was now going to be used at multiple sites

(VAFB), and because it would probably be with the Shuttle program longer than its designer, docu-

mentation became more important.

In addition to the console set working teams, someone had to assure the consoles would

communicate properly with one another, and that subsystems required to support other subsystems

were aware of it. This function is provided for by the Software Automation Subpanel. This

group's primary responsibility is the integration of the automation effort within the Firing

Roan.

STRU_ STANDARD

The Software Structure Standard establishes a software design that separates the overall

software function into primarily three groups. Display Driver programs are the primary man-

machine interface. The operator uses these Display Driver programs to initiate software func-

tions and also to view data on the engineering system. _nile looking at an _erview display of a

Shuttle system, the operator may move a cursor to a target on the CRT which causes the overview

display to terminate and ar_ther Display Driver is to be performed which displays a particular

subsystem in greater detail. This Display Driver may have cursor targets that, when selected,

cause a particular ocmmand to be issued. The o0mmand feedback is displayed, allowing the opera-

tor visability into system response to the command.

Sequencer programs are designed to automate a particular function. There are Sequencer

programs that power-up a particular hardware system on the Orbiter. There are sequencers that

perform detailed LRU checkout. In general, a sequencer requires no manual control except to

perhaps supply program options, or respond to errors. A sequencer provides only limited operator

interface capability. Instead the sequencer interfaces with Display Driver prograas to display

messages or to present prompts to the operator. The Sequencer program is also responsible for

recognizing and reacting to system ancmalies.

The third class of prograns are those that bind the other program types together and provide

the continuity between one function and another. The main program in this type is called the

System Scheduler. The purpose of this progran is to validate all requests to perform a function

against functions already in progress and the current hardware configuration. It also estab-

lishes a relative priority among functions and will interrupt one task to execute a task of a

higher priority. The System Scheduler is the hub of inter and intra console software

communication. When one program needs to communicate to another it sends the request to the

System Scheduler which will validate the request and relay it to the proper receiving program.

This sane scheme works when one Application Set needs to send data to or request data from

another Application Set. This standardized communication scheme provides the linkages that form

an integrated Application Set and ultimately an integrated Firing Room software design.

CONSOLE ST_TICNKEEPrNG

In order to solve the problem of decreasing the number of engineers required on console

during relatively quiet periods while other subsystems are testing, we developed a concept called

99



"Stationkeeping", (frequently r_ferred to as "babysitting"). Depending upon the system being

station-kept, the level of monitoring of functions and automatic response varies. All systems

have a set of measurements which are monitored for anomalous conditions. In general, these meas-

urements are monitored against limits in the Front End Processors. When a limit is violdated, an

interrupt is sent to the GOAL program at the console. In response to this interrupt, the program

then evaluates a set of related measurements to determine what, if any, the failure was. A

message indicating the failure is then sent to the operator. In the case where no operator is

present, the message is routed to the Integration console for display to the operator there.

What happens in response to an error? Here again, this is system dependent. In DPS, any

failures which degraded the testing support (such as a GPC failure) caused data oollection to he

automatically initiated and a proposed plan for recovery to be displayed to the operator. If the

console operator selects to perform the recovery plan, all steps which can are automatically

executed. Any steps requiring manual actions are presented in a tutorial fashion. This

software, in essence, is a canned "expert system engineer" who knows what to do ahead of time in

all predictable failures. There undoubtably will be cases which the software was not designed to

cover. When these occur they will be added into our software, thus teaching our "expect" some-
thing new.

The concept of stopping to provide the console operator with an option to perform the re-

covery sequence or not is not used in all cases. In many instances, because of possible hazards

involved or potential hardware damage, recovery is invoked automatically. Loss of cooling is an

example where steps are automatically taken to restore oooling to the vehicle without operator
intervention.

Once we developed the concept of stationkeeping software for systems when engineers were not

going to be on station, it was just an extension to also use this same software when the engineer

was on station. This helps in assuring the appropriate data is taken when a problem occurs and

that the correct steps are taken to correct a problem. This allows less experienced engineers to

become console operators. The stationkeeping concept has also been extended to systems such as

hydraulics to provide their "incident prevention" software which causes emergency hydraulics

power down whenever anything is detected which indicates the system is incorrectly configured or

something critical has failed which could result in hardware damage.

In the case of DPS, in order to have Integration console do their stationkeeping a nt_ber of

support functions had to be performed from the Integration console (i.e., format changes, launch

data bus switching, I/O resets, etc. ). This was easily implemented using the o_unication tech-

niques described above. As the system matures, additional capabilites will be added to the Inte-

gration console menu of DPS functions to increase the amount of time stationkeeping can be active
from the Integration console.

Although our stationkeeping software is still under development, we have already begun to

reap the rewards. DPS stationkeeping software went on station during STS-6. Approximately 80%

of the flow is now done with no one at the DPS console. This solves many problems:

o Mor_ cost effective utilization of manpower.

o Improved morale by decreasing shift work.

o Allow engineers to work more interesting tasks.

THE _ ISNOTOVER

The solutions that have been outlined have a common denominator. They all require highly

integrated and complex software. Early efforts at automation isolated top level functions from

one another to minimize the amount of interaction between software elements. This methodology

worked fine but it would not support an environment where multiple s_ni-independent operations

100



Firing Roam environment is exactly what is needed to produce a turnaround concept that minimizes

h_T_n intervention and decision making. Now that we have solutions for our past challenges, new

ones oonfront us in our efforts to control this huge ball that has begun to roll called "automa-

tion". The software development tools that we have used in the past were fashioned after our

level of sophisticated software which in most cases was crude. The new challenge that we face is

to produce the software development tools and techniques that will keep the automating ball roll-

ing in the right direction and speed so as not to swallow up those of us in its path.

For the most part, mathematical models of the various Shuttle and ground support systems

were used to verify the checkout application software. Our simulation capability is called the

SG06 (Shuttle Ground Operations Simulator) system. It oonsists of math models executing under a

real-time operating system in one of our ground data processing cor_puters and another computer

that supports the Orbiter and ground data links, buffering, and data conditioning between the

Firing Roam and the real-time operating system. To the Firing Room personnel and their software

executing in the consoles, a high fidelity math model will provide measurements and react to

oo_mands identically to its hardware counterpart. The math models would adequately allow the

engineer to debug and verify his mostly manually controlled programs, but they were not to the

level of fidelity to simulate a total system response to a stimuli. The need to have high fidel-

ity integrated models of hardware was an obvious priority when we began our automation effort.

Once high fidelity models were produced, we quickly ran into the limits of the real-time simula-

tion capabilities. Unlike other NASA centers, we don't have dedicated computers for our math

models to run in. Instead we designed a real-time simulation operating system that would time-

share the (x_mputer resources with many other operations. Because of this constraint, the problem

of increasing the simulation capability without taking over the whole computer and still main-

taining real-time response proved quite challenging. The end result of this challenge is affec-

tionstely known as "Big Sim". The system has just been released for Firing Room use. It triples

our model capacity while spreading out its operating system responsibilities so as not to signi-

ficantly increase processor usage. With this increased capability, we are now able to integrate

enough system models to simulate a total Shuttle at the Pad with the required ground support

equipment. For the first time we will have the capability to provide launch countdown simulation

with high fidelity math models. "Big Sire" is a necessary and welcome addition to our expanding

collection of software development tools.

Software development is a lengthy and time consuming process. Requirements must be

generated, software specifications must be developed, and the programs themselves have to be

coded, debugged, and verified. Each of these steps have to be reviewed and approved. The whole

process is complicated even more by our overall objectives to significantly increase the level of

integration between systems. The automation effort requires a substantial c(mmittment by NASA

and its contractors to supply the necessary manpower to ir_plement these concepts that have been

discussed. This software development effort coincides with our requirement to shorten Shuttle

turnaround and to process multiple Orbiters, ET, and SRB's in parallel. All this must be done

within the current manpower ceilings in order to re_in cost-effective. How do we do it?

We are currently working on a software system that will take a software specification as

input and generate an application program. The system is called LAP (Launch Processing System

Automatic Prograrmer). The specification doct_ent written in a user oriented language is pro-

cessed against the rules of our Application Software Structure Standard. The output will be an

application program meeting the software specification requirements and also conforming to the

Structure Standard. This automatically generated program should be much easier to debug because

only high level logic needs to be checked instead of a module by module debug. This system is in

the very early stages of implementation, so it is too early to tell how efficient the end product

will be. Because few of our application programs have been optimized for speed, we do not expect

the inherent degradation of performance usually associated with adding another layer of software

between the programmer and ccmputer to be much of a problem.

We have accomplished a lot in our automation efforts to date, but the job is far from

complete and we continue to meet challenges On a daily basis.

101


